Microelectrode- and nanoelectrode-based electrochemistry has become a powerful tool for the in situ monitoring of various biomolecules in vivo. However, two challenges limit the application of micro- and nanoelectrodes: the difficulty of highly sensitive detection of nonelectroactive molecules and the specific detection of target molecules in complex biological environments. Herein, we propose an electrochemical microsensor based on an entropy-driven multipedal DNA walker for the highly sensitive and selective detection of ATP.
View Article and Find Full Text PDFNatural products play a significant role in new drug discovery and anticancer therapy, making the evaluation of their anticancer efficiency crucial for clinical application. However, delivering natural products to single cells and in situ monitoring of induced signaling molecule fluctuation to evaluate anticancer efficiency remain significant challenges. Hence, we proposed a universal and straightforward strategy to construct a bifunctional nanoelectrode that integrates drug loading and monitoring of signal molecule fluctuations at the single-cell level.
View Article and Find Full Text PDFNeuropathic pain is a chronic and severe syndrome for which effective therapy is insufficient and the release of ATP from microglia induced by sphingosine-1-phosphate (S1P) plays a vital role in neuropathic pain. Therefore, there is an urgent demand to develop highly sensitive and selective ATP biosensors for quantitative monitoring of low-concentration ATP in the complex nervous system, which helps in understanding the mechanism involved in neuropathic pain. Herein, we developed an electrochemical microsensor based on an entropy-driven bipedal DNA walker.
View Article and Find Full Text PDFBone defects are a common challenge in the clinical setting. Bone tissue engineering (BTE) is an effective treatment for the clinical problem of large bone defects. In this study, we fabricated silk fibroin (SF)/hydroxyapatite (HAp) scaffolds inlaid with naringin poly lactic-co-glycolic acid (PLGA) microspheres, investigating the feasibility of their application in BTE.
View Article and Find Full Text PDFObjectives: Large bone defects are a common, debilitating clinical condition that have substantial global health and economic burden. Bone tissue engineering technology has become one of the most promising approaches for regenerating defective bones. In this study, we fabricated a naringin-inlaid composite silk fibroin/hydroxyapatite (NG/SF/HAp) scaffold to repair bone defects.
View Article and Find Full Text PDFDisuse osteoporosis (DOP) is a common complication resulting from the lack of or disuse of mechanical loading and has been unsatisfactorily treated. We hypothesized that exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSCs) could reduce bone marrow mesenchymal stem cell (BMSC) apoptosis in rat DOP via the miR-1263/Mob1/Hippo signaling pathway. To evaluate the function of exosomes derived from HUCMSCs (HUCMSC-Exos) in DOP, hind limb unloading (HLU)-induced DOP rat models were prepared.
View Article and Find Full Text PDF