The well-studied star compound, CH3NH3PbI3, has attracted plenty of attention because of its remarkable optical and electrical properties. Consequently, new switching multifunctional hybrid compounds can be widely used in many fields such as solar cells, light-emitting diodes, optical data storage and so on. Therefore, switching multifunctional hybrid compounds with dielectric and semiconducting properties simultaneously will also find roles in the next generation of optoelectronic coupling materials.
View Article and Find Full Text PDFAs a major branch of hybrid perovskites, two-dimensional (2D) hybrid double perovskites are expected to be ideal systems for exploring novel ferroelectric properties, because they can accommodate a variety of organic cations and allow diverse combinations of different metal elements. However, no 2D hybrid double perovskite ferroelectric has been reported since the discovery of halide double perovskites in the 1930s. Based on trivalent rare-earth ions and chiral organic cations, we have designed a new family of 2D rare-earth double perovskite ferroelectrics, AMM(NO), where A is the organic cation, M is the alkaline metal or ammonium ion, and M is the rare-earth ion.
View Article and Find Full Text PDFSubstitution of A-site and/or X-site ions of ABX -type perovskites with organic groups can give rise to hybrid perovskites, many of which display intriguing properties beyond their parent compounds. However, this method cannot be extended effectively to hybrid antiperovskites. Now, the design of hybrid antiperovskites under the guidance of the concept of Goldschmidt's tolerance factor is presented.
View Article and Find Full Text PDF