Publications by authors named "Jia-Xin Zou"

One of the most sought-after topics in neuroscience is to understand how the environment regulates the activity and function of neural circuitry and subsequently influences relevant behaviors. In response to alterations in the environment, the neural circuits undergo adaptive changes ranging from gene expression changes to altered cellular function. Performing sequencing of the transcriptome involved in these behavior-related circuits will provide clues to accurately dissect the detailed mechanisms of related behavior.

View Article and Find Full Text PDF

Dysregulated GABAergic inhibition in the amygdala has long been implicated in stress-related neuropsychiatric disorders. However, the molecular and circuit mechanisms underlying the dysregulation remain elusive. Here, by using a mouse model of chronic social defeat stress (CSDS), we observed that the dysregulation varied drastically across individual projection neurons (PNs) in the basolateral amygdala (BLA), one of the kernel amygdala subregions critical for stress coping.

View Article and Find Full Text PDF

Aims: Early life stress (ELS) increases the risk of psychiatric diseases such as anxiety disorders and depression in later life. Hyperactivation of the basolateral amygdala (BLA) neurons plays a pivotal role in the pathogenesis of stress-related diseases. However, the functional roles of BLA neurons in ELS-induced anxiety disorders are not completely understood.

View Article and Find Full Text PDF

From March 2018 to February 2019, quantitative detection was made of 102 kinds of atmospheric volatile organic compounds (VOCs) using online gas chromatography in Ezhou City. We compared and analyzed the composition, seasonal variation, and diurnal variation of VOCs. Using maximum incremental reactivity (MIR), we estimated the ozone generation potential (OFP) of VOCs.

View Article and Find Full Text PDF

Dysregulated prefrontal control over amygdala is engaged in the pathogenesis of psychiatric diseases including depression and anxiety disorders. Here we show that, in a rodent anxiety model induced by chronic restraint stress (CRS), the dysregulation occurs in basolateral amygdala projection neurons receiving mono-directional inputs from dorsomedial prefrontal cortex (dmPFC→BLA PNs) rather than those reciprocally connected with dmPFC (dmPFC↔BLA PNs). Specifically, CRS shifts the dmPFC-driven excitatory-inhibitory balance towards excitation in the former, but not latter population.

View Article and Find Full Text PDF

Chronic or prolonged exposure to stress ranks among the most important socioenvironmental factors contributing to the development of neuropsychiatric diseases, a process generally associated with loss of inhibitory tone in amygdala. Recent studies have identified distinct neuronal circuits within the basolateral amygdala (BLA) engaged in different emotional processes. However, the potential circuit involved in stress-induced dysregulation of inhibitory tones in BLA remains elusive.

View Article and Find Full Text PDF

Exposure to moderate level of stress during the perinatal period helps the organisms to cope well with stressful events in their later life, an effect known as stress inoculation. Amygdala is one of the kernel brain regions mediating stress-coping in the brain. However, little is known about whether early life stress may affect amygdala to have its inoculative effect.

View Article and Find Full Text PDF