Targeting oxidative phosphorylation (OXPHOS) through inhibiting the electron transport chain (ETC) has shown promising pre-clinical efficacy in cancer therapy. Although aerobic glycolysis is a hallmark of cancer, emerging evidence suggest OXPHOS is frequently enhanced, providing metabolic advantages for cell proliferation, metastasis, and drug resistance in a variety of aggressive cancer types including non-small cell lung cancer (NSCLC), yet the underlying molecular mechanisms remain elusive. Here it is reported that POU-domain containing family protein POU3F3 is translocated into the nuclei of NSCLC cell lines harboring mutant RAS, where it activates transcription of ATP5PF, an essential component of mitochondrial ATP synthase and consequent ATP production, leading to enhanced NSCLC proliferation and migration.
View Article and Find Full Text PDFCerium (IV)-based metal-organic frameworks (MOFs) are highly desirable due to their unique potential in fields such as redox catalysis and photocatalysis. However, due to the high reduction potential of Ce species in solution, it is still a great challenge to synthesize Ce -MOFs with novel structures, which are extremely dominated by the hexanuclear Ce-O cluster inorganic building units (IBUs). Herein, a Ce-O IBU chain containing Ce -MOF, CSUST-3 (CSUST: Changsha University of Science and Technology), was successfully prepared using the kinetic stabilization study of UiO-66(Ce)-NDC (H NDC=2,6-naphthalenedicarboxylic acid).
View Article and Find Full Text PDF