Publications by authors named "Jia-Tian Lu"

The Veratrum alkaloids are a class of highly intricate natural products renowned for their complex structural and stereochemical characteristics, which underlie a diverse array of pharmacological activities ranging from anti-hypertensive properties to antimicrobial effects. These properties have generated substantial interest among both synthetic chemists and biologists. While numerous advancements have been made in the synthesis of jervanine and veratramine subtypes over the past 50 years, the total synthesis of highly oxidized cevanine subtypes has remained relatively scarce.

View Article and Find Full Text PDF

The alkaloids are highly complex steroidal alkaloids characterized by their intricate structural and stereochemical features and exhibit a diverse range of pharmacological activities. A new synthetic pathway has been developed to access this family of natural products, which enabled the first total synthesis of (-)-zygadenine. This synthetic route entails the construction of a hexacyclic carbon skeleton through a stereoselective intramolecular Diels-Alder reaction, followed by a radical cyclization.

View Article and Find Full Text PDF

The enantioselective synthesis of (+)-isolysergol was completed in 18 steps, and an overall yield of 11% was obtained from (2)-(+)-phenyloxirane as a chiral pool. Key features of the synthesis include a stereoselective intramolecular 1,3-dipolar addition of nitrone with terminal olefin and a Cope elimination to furnish the D ring. A rhodium-catalyzed intramolecular [3 + 2] annulation of a benzene ring with α-imino carbenoid was designed to afford the 3,4-fused indole scaffold at the late stage of the synthesis.

View Article and Find Full Text PDF

A new and general method to functionalize the C(sp)-C(sp) bond of alkyl and alkene linkages has been developed, leading to the dealkenylative generation of carbon-centered radicals that can be intercepted to undergo Ni-catalyzed C(sp)-C(sp) cross-coupling. This one-pot protocol leverages the easily procured alkene feedstocks for organic synthesis with excellent functional group compatibility without the need for a photoredox catalyst.

View Article and Find Full Text PDF

An enantioselective total synthesis of (-)-batrachotoxinin A is accomplished based on a key photoredox coupling reaction and the subsequent local-desymmetrization operation. After the expedient assembly of the highly oxidized steroid skeleton, a delicate sequence of redox manipulations was carried out to deliver a late-stage intermediate on gram scale-and ultimately (-)-batrachotoxinin A in an efficient manner.

View Article and Find Full Text PDF

An efficient and direct route to ergot alkaloid (-)-chanoclavine I (3) is described using the inexpensive compound (2R)-(+)-phenyloxirane (15) as a chiral pool in 13 steps with 17% overall yield. Key features of the synthesis include a palladium-catalyzed intramolecular aminoalkynylation of terminal olefin and a rhodium-catalyzed intramolecular [3 + 2] annulation. An oxygen-substituted ergoline derivative (-)-25 was also achieved by using the same strategy.

View Article and Find Full Text PDF

An efficient formal synthesis of (±)-cycloclavine is achieved in seven steps and 27% overall yield from the known 2-(4-bromo-1-tosyl-1H-indol-3-yl)acetaldehyde. Key features include an iron(III)-catalyzed aza-Cope-Mannich cyclization and an intramolecular Heck reaction or a self-terminating 6-exo-trig aryl radical-alkene cyclization.

View Article and Find Full Text PDF