A major rate-limiting step in developing more effective immunotherapies for GBM is our inadequate understanding of the cellular complexity and the molecular heterogeneity of immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human glioma, immune, and other stromal cells at the single cell level. In doing so, we discover extensive spatial and molecular heterogeneity in immune infiltrates.
View Article and Find Full Text PDFThe application of tumor immunotherapy to glioblastoma (GBM) is limited by an unprecedented degree of immune suppression due to factors that include high numbers of immune suppressive myeloid cells, the blood brain barrier, and T cell sequestration to the bone marrow. We previously identified an increase in immune suppressive myeloid-derived suppressor cells (MDSCs) in GBM patients, which correlated with poor prognosis and was dependent on macrophage migration inhibitory factor (MIF). Here we examine the MIF signaling axis in detail in murine MDSC models, GBM-educated MDSCs and human GBM.
View Article and Find Full Text PDFPurpose: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma.
Experimental Design: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination.
Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs.
View Article and Find Full Text PDFAmong myriads of distinct chemical modification in RNAs, the dynamic, reversible and fine-tuned methylation of N-methyladenosine (mA) is the most prevalent modification in eukaryotic mRNAs. This RNA mark is generated by proteins that act as mA writers and can be reversed by proteins that act as mA erasers. The RNA mA modification is also mediated by another group of proteins capable of recognizing mA that act as mA readers.
View Article and Find Full Text PDFBackground: SP110, an interferon-induced nuclear protein, belongs to the SP100/SP140 protein family. Very recently, we showed that SP110b, an SP110 isoform, controls host innate immunity to Mycobacterium tuberculosis infection by regulating nuclear factor-κB (NF-κB) activity. However, it remains unclear how the structure of SP110 relates to its cellular functions.
View Article and Find Full Text PDFAm J Respir Crit Care Med
February 2017
Rationale: How host genetic factors affect Mycobacterium tuberculosis (Mtb) infection outcomes remains largely unknown. SP110b, an IFN-induced nuclear protein, is the nearest human homologue to the mouse Ipr1 protein that has been shown to control host innate immunity to Mtb infection. However, the function(s) of SP110b remains unclear.
View Article and Find Full Text PDF