Publications by authors named "Jia-Rung Tsai"

Leukaemia stem cells (LSCs) are major contributors to chemoresistance in acute myeloid leukaemia (AML). Identifying potential biomarkers within LSCs that can predict chemosensitivity in AML is key. This prospective study involved 20 consecutive de novo AML patients who underwent '7 + 3' induction therapy.

View Article and Find Full Text PDF

Background: Bortezomib is a standard treatment for multiple myeloma (MM), working by the accumulation of toxic misfolded proteins in cancer cells. However, a significant clinical challenge arises from the development of resistance to bortezomib in MM treatment. Aggresome, a subcellular structure enclosed within Vimentin, forms in response to proteasome inhibitors and sequesters misfolded proteins that are transported by histone deacetylase 6 (HDAC6) and Dynein for degradation via autophagy, thereby reducing bortezomib's cytotoxic effects.

View Article and Find Full Text PDF

Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * A specific protein complex consisting of Ajuba, Aurora-A, and PRMT5 was identified as critical for maintaining the Golgi ribbon structure, with their mutual modifications leading to the formation of HURP p725, a key regulator for Golgi assembly.
  • * Experiments showed that HURP p725 is essential for the normal crescent shape of the Golgi; its absence results in a fragmented structure, while its presence helps stabilize other Golgi assembly factors and ensures proper formation at the cell's center.
View Article and Find Full Text PDF

Our previous study demonstrated that myc, mitochondrial oxidative phosphorylation, mTOR, and stemness are independently responsible for chemoresistance in acute myeloid leukemia (AML) cells. This study aimed to identify potential mechanisms of chemoresistance of the "7 + 3" induction in AML by using a single-cell RNA sequencing (scRNA-seq) approach. In the present study, 13 untreated patients with de novo AML were enrolled and stratified into two groups: complete remission (CR; n = 8) and non-CR (n = 5).

View Article and Find Full Text PDF