ACS Appl Mater Interfaces
March 2024
MXene, renowned for its natural "quantum-confined-superfluidic" (QSF) channels, demonstrates superior electrical/thermal conductivity, favorable hydrophilicity, and remarkable mechanical strength, rendering it an ideal candidate for multiresponsive actuators, which are promising for soft electronics and robots. Currently, most MXene-based actuators are mainly prepared by combining an active layer and an inner layer, with only a few utilizing regulated QSF channels. However, tailoring QSF channels for multiresponsive actuators is extremely challenging.
View Article and Find Full Text PDFGraphene oxide (GO) films with natural "quantum-confined-superfluidics" (QSF) channels for moisture actuation have emerged as a smart material for actuators and soft robots. However, programming the deformation of GO by engineering QSF nanochannels around 1 nm is extremely challenging. Herein, we report the reconfigurable, reversible, and redefinable deformation of GO under moisture actuation by tailoring QSF channels via moisture-assisted strain-induced wrinkling (MSW).
View Article and Find Full Text PDFGraphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture-responsive sensors and actuators due to the strong water-GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture-responsive actuators based on GO have shown distinct advantages over other stimuli-responsive materials and devices. Particularly, inspired by nature organisms, various moisture-enabled soft robots have been successfully developed via rational assembly of the GO-based actuators.
View Article and Find Full Text PDFGraphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective coupling and coordination of living cells, we fabricated a moisture-responsive graphene actuator swarm that has programmable shape-changing capability by programming the SU-8 patterns underneath.
View Article and Find Full Text PDFMoisture-responsive actuators based on graphene oxide (GO) have attracted intensive research interest in recent years. However, current GO actuators suffer from low mechanical strength. Inspired by the robustness of nacre's structure, moisture-responsive actuators with high mechanical strength and self-healing properties were successfully developed based on GO and cellulose fiber (CF) hybrids.
View Article and Find Full Text PDFThe strong interaction between graphene oxides (GO) and water molecules has trigged enormous research interest in developing GO-based separation films, sensors, and actuators. However, sophisticated control over the ultrafast water transmission among the GO sheets and the consequent deformation of the entire GO film is still challenging. Inspired from the natural "quantum-tunneling-fluidics-effect," here quantum-confined-superfluidics-enabled moisture actuation of GO paper by introducing periodic gratings unilaterally is reported.
View Article and Find Full Text PDFThe research interest in wearable electronics has continuously stimulated the development of flexible energy storage systems with high performance and robustness. However, open problems with respect to energy storage efficiency and device integration are still challenging. Here, we demonstrate the laser fabrication of flexible planar supercapacitors based on graphene oxide (GO) and black phosphorus quantum dot (BPQD) nanocomposites.
View Article and Find Full Text PDFRecent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light-mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized.
View Article and Find Full Text PDF