Pathological cardiac hypertrophy is a major contributor to heart failure. The present study aims to elucidate the role and mechanisms of phosphoglycerate mutase 2 (PGAM2) in the pathogenesis of cardiac hypertrophy. PGAM2 expression was increased in both primary neonatal rat ventricular myocytes (NRVMs) and rat models in response to angiotensin II (Ang II).
View Article and Find Full Text PDFInt Immunopharmacol
October 2024
Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption.
View Article and Find Full Text PDFCardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis.
View Article and Find Full Text PDFCyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase (cGAS) is a DNA sensor that detects and binds to cytosolic DNA to generate cyclic GMP-AMP (cGAMP). As a second messenger, cGAMP mainly activates the adapter protein STING, which induces the production of type I interferons (IFNs) and inflammatory cytokines. Mounting evidence shows that cGAS is extensively involved in the innate immune response, senescence, and tumor immunity, thereby exhibiting a tumor-suppressive function, most of which is mediated by the STING pathway.
View Article and Find Full Text PDFTargeting autophagy might be a promising anticancer strategy; however, the dual roles of autophagy in cancer development and malignancy remain unclear. NSCLC (non-small cell lung cancer) cells harbour high levels of SQSTM1 (sequestosome 1), the autophagy receptor that is critical for the dual roles of autophagy. Therefore, mechanistic insights into SQSTM1 modulation may point towards better approaches to treat NSCLC.
View Article and Find Full Text PDF