Ultrasound-mediated drug delivery is typically performed using transducers with center frequencies 1 MHz to promote acoustic cavitation. Such frequencies are not commonly used for diagnostic ultrasound due to limited spatial resolution. Therefore, delivery and monitoring of therapeutic ultrasound typically requires two transducers to enable both treatment and imaging.
View Article and Find Full Text PDFMetastatic tumours in the brain now represent one of the leading causes of death from cancer. Current treatments are largely ineffective owing to the combination of late diagnosis and poor delivery of therapies across the blood-brain barrier (BBB). Conjugating magnetic resonance imaging (MRI) contrast agents with a monoclonal antibody for VCAM-1 (anti-VCAM1) has been shown to enable detection of micrometastases, two to three orders of magnitude smaller in volume than those currently detectable clinically.
View Article and Find Full Text PDFAsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy.
View Article and Find Full Text PDFFLASH radiotherapy is a novel technique that has been shown in numerous preclinical in vivo studies to have the potential to be the next important improvement in cancer treatment. However, the biological mechanisms responsible for the selective FLASH sparing effect of normal tissues are not yet known. An optimal translation of FLASH radiotherapy into the clinic would require a good understanding of the specific beam parameters that induces a FLASH effect, environmental conditions affecting the response, and the radiobiological mechanisms involved.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
December 2021
Purpose: Preclinical studies using ultra-high dose rate (FLASH) irradiation have demonstrated reduced normal tissue toxicity compared with conventional dose rate (CONV) irradiation, although this finding is not universal. We investigated the effect of temporal pulse structure and average dose rate of FLASH compared with CONV irradiation on acute intestinal toxicity.
Materials And Methods: Whole abdomens of C3H mice were irradiated with a single fraction to various doses, using a 6 MeV electron linear accelerator with single pulse FLASH (dose rate = 2-6 × 10 Gy/s) or conventional (CONV; 0.
Treatment options for patients with pancreatic cancer are limited and survival prospects have barely changed over the past 4 decades. Chemoradiation treatment (CRT) has been used as neoadjuvant therapy in patients with borderline resectable disease to reduce tumour burden and increase the proportion of patients eligible for surgery. Antimetabolite drugs such as gemcitabine and 5-fluorouracil are known to sensitise pancreatic tumours to radiation treatment.
View Article and Find Full Text PDFIn this study we compared three different microbubble-based approaches to the delivery of a widely used chemotherapy drug, gemcitabine: (i) co-administration of gemcitabine and microbubbles (Gem+MB); (ii) conjugates of microbubbles and gemcitabine-loaded liposomes (GemlipoMB); and (iii) microbubbles with gemcitabine directly bound to their surfaces (GembioMB). Both in vitro and in vivo investigations were carried out, respectively, in the RT112 bladder cancer cell line and in a murine orthotopic muscle-invasive bladder cancer model. The in vitro (in vivo) ultrasound exposure conditions were a 1 (1.
View Article and Find Full Text PDFPurpose: Muscle-invasive bladder cancer has a 40% to 60% 5-year survival rate with radical treatment by surgical removal of the bladder or radiation therapy-based bladder preservation techniques, including concurrent chemoradiation. Elderly patients cannot tolerate current chemoradiation therapy regimens and often receive only radiation therapy, which is less effective. We urgently need effective chemotherapy agents for use with radiation therapy combinations that are nontoxic to normal tissues and tolerated by elderly patients.
View Article and Find Full Text PDFContext: In the past few years, research has suggested that molecular subtypes in muscle-invasive bladder cancer (MIBC) may be exploited to accelerate developments in clinical disease management and novel therapeutics.
Objective: To review MIBC mouse models from a molecular subtype perspective, their advantages and limitations, and their applications in translational medicine, based on a PubMed search for publications from January 2000 to February 2018.
Evidence Acquisition: Publications relevant to MIBC mouse models and their molecular subtypes were identified in a literature review.
As the population ages, more elderly patients require radiotherapy-based treatment for their pelvic malignancies, including muscle-invasive bladder cancer, as they are unfit for major surgery. Therefore, there is an urgent need to find radiosensitizing agents minimally toxic to normal tissues, including bowel and bladder, for such patients. We developed methods to determine normal tissue toxicity severity in intestine and bladder , using novel radiotherapy techniques on a small animal radiation research platform (SARRP).
View Article and Find Full Text PDFBackground: Tissue engineering enables the generation of functional human cardiac tissue with cells derived in vitro in combination with biocompatible materials. Human-induced pluripotent stem cell-derived cardiomyocytes provide a cell source for cardiac tissue engineering; however, their immaturity limits their potential applications. Here we sought to study the effect of mechanical conditioning and electric pacing on the maturation of human-induced pluripotent stem cell-derived cardiac tissues.
View Article and Find Full Text PDFRecent advances in pluripotent stem cell biology and directed differentiation have identified a population of human cardiovascular progenitors that give rise to cardiomyocytes, smooth muscle, and endothelial cells. Because the heart develops from progenitors in 3D under constant mechanical load, we sought to test the effects of a 3D microenvironment and mechanical stress on differentiation and maturation of human cardiovascular progenitors into myocardial tissue. Progenitors were derived from embryonic stem cells, cast into collagen hydrogels, and left unstressed or subjected to static or cyclic mechanical stress.
View Article and Find Full Text PDFTissue Eng Part C Methods
October 2013
The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel.
View Article and Find Full Text PDFCavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis.
View Article and Find Full Text PDFA thrombus-targeted ultrasound contrast agent bound with tirofiban - a glycoprotein (GP) IIb/IIIa antagonist that can specifically bind to activated platelets in the thrombus - was designed to enhance both the image contrast and thrombolysis effect. In this study, we used 76 canine thrombi for investigation. The targeting ability to thrombi was confirmed by microphotography and high-frequency ultrasound (40 MHz) imaging.
View Article and Find Full Text PDF