The development of alternative alloy catalysts with high activity, surpassing platinum group metals, for the oxygen reduction reaction (ORR) is urgently needed in the field of electrocatalysis. The Ag-based single-atom alloy (AgSAA) cluster has been proposed as a promising catalyst for the ORR; however, enhancing its activity under operational conditions remains challenging due to limited insights into its actual active site. Here, we demonstrate that the operando formation of the MO (OH) complex serves as the key active site for catalyzing the ORR over AgSAA cluster catalysts, as revealed through comprehensive neural network potential molecular dynamics simulations combined with first-principles calculations.
View Article and Find Full Text PDF