Publications by authors named "Jia-Kai Hou"

Previously we reported that the expression of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARα) fusion gene, which is caused by specific translocation (15;17) in acute promyelocytic leukemia, can enhance constitutive autophagic activity in leukemic and nonleukemic cells, and PML overexpression can sequestrate part of microtubule-associated protein light chain 3 (LC3) protein in PML nuclear bodies, suggesting that LC3 protein also distributes into nuclei although it is currently thought to function primarily in the cytoplasm, the site of autophagosomal formation. However, its potential significance of nucleoplasmic localizations remains greatly elusive. Here we demonstrate that PML interacts with LC3 in a cell type-independent manner as assessed by Co-IP assay and co-localization observation.

View Article and Find Full Text PDF

We previously reported that moderate hypoxia and hypoxia-mimetic agents including cobalt chloride (CoCl(2)) induce differentiation of human acute myeloid leukemia (AML) cells through hypoxia-inducible factor-1 α (HIF-1 α), which interacts with and enhances transcriptional activity of CCAAT-enhancer binding factor alpha and Runx1/AML1, two important transcriptional factors for hematopoietic cell differentiation. Here, we show that autophagy inhibitor chloroquine (CQ) increases HIF-1 α accumulation, thus potentiating CoCl(2)-induced growth arrest and differentiation of leukemic cells. Furthermore, the increased effect of CQ on differentiation induction is dependent of the inhibition of autophagosome maturation and degradation, since this sensitization could be mimicked by the suppression of expression of both lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2).

View Article and Find Full Text PDF

Autophagy is a highly conserved, closely regulated homeostatic cellular activity that allows for the bulk degradation of long-lived proteins and cytoplasmic organelles. Its roles in cancer initiation and progression and in determining the response of tumor cells to anticancer therapy are complicated, and only limited investigation has been conducted on the potential significance of autophagy in the pathogenesis and therapeutic response of acute myeloid leukemia. Here we demonstrate that the inducible or transfected expression of the acute promyelocytic leukemia (APL)-specific PML-RARα, but not PLZF-RARα or NPM-RARα, fusion protein upregulates constitutive autophagy activation in leukemic and nonleukemic cells, as evaluated by hallmarks for autophagy including transmission electron microscopy.

View Article and Find Full Text PDF