Motivation: Spatially resolved gene expression profiles are the key to exploring the cell type spatial distributions and understanding the architecture of tissues. Many spatially resolved transcriptomics (SRT) techniques do not provide single-cell resolutions, but they measure gene expression profiles on captured locations (spots) instead, which are mixtures of potentially heterogeneous cell types. Currently, several cell-type deconvolution methods have been proposed to deconvolute SRT data.
View Article and Find Full Text PDFMotivation: Differential network analysis is an important tool to investigate the rewiring of gene interactions under different conditions. Several computational methods have been developed to estimate differential networks from gene expression data, but most of them do not consider that gene network rewiring may be driven by the differential expression of individual genes. New differential network analysis methods that simultaneously take account of the changes in gene interactions and changes in expression levels are needed.
View Article and Find Full Text PDFMotivation: Reconstruction of cancer gene networks from gene expression data is important for understanding the mechanisms underlying human cancer. Due to heterogeneity, the tumor tissue samples for a single cancer type can be divided into multiple distinct subtypes (inter-tumor heterogeneity) and are composed of non-cancerous and cancerous cells (intra-tumor heterogeneity). If tumor heterogeneity is ignored when inferring gene networks, the edges specific to individual cancer subtypes and cell types cannot be characterized.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
May 2018
Understanding how gene dependency networks rewire between different disease states is an important task in genomic research. Although many computational methods have been proposed to undertake this task via differential network analysis, most of them are designed for a predefined data type. With the development of the high throughput technologies, gene activity measurements can be collected from different aspects (e.
View Article and Find Full Text PDF