The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.
View Article and Find Full Text PDFDevelopment of high-performance cutting tool materials is one of the critical parameters enhancing the surface finishing of high-speed machined products. Ti(C,N)-based cermets reinforced with and without different contents of silicon nitride were designed and evaluated to satisfy the requirements. In fact, the effect of silicon nitride addition to Ti(C,N)-based cermet remains unclear.
View Article and Find Full Text PDFNanocrystalline alumina-zirconia-based eutectic ceramics fabricated with high-energy beams and composed of ultrafine, three-dimensionally entangled, single-crystal domains are a special category of eutectic oxides that exhibit exceptionally high-temperature mechanical properties, such as strength and toughness as well as creep resistance. This paper aims to provide a comprehensive review on the basic principles, advanced solidification processes, microstructure and mechanical properties of alumina-zirconia-based eutectic ceramics, with particular attention to the status of the art on a nanocrystalline scale. Some basic principles of coupled eutectic growth are first introduced based on previously reported models, followed by concise introduction of solidification techniques and the control strategy of solidification behavior from the processing variables.
View Article and Find Full Text PDFSurface reactions occurring on LiMnO, LiCoO, LiNiO, Li[NiMnCo]O, and LiFePO during charging and overcharging are studied by in situ and ex situ Auger electron spectroscopy. Carbon surface stability at the cathode solid-electrolyte interphase (SEI), associated with carbonate formation, decomposition, and CO/CO evolution, on different electrodes during cycling correlates with their cycle life. To understand how associated CO and CO evolution affects cycle stability, LiMnO is cycled in flowing gas.
View Article and Find Full Text PDFA facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm (0.
View Article and Find Full Text PDF