This study was conducted to explore the molecular mechanisms of berberine (Ber) via peroxisome proliferator-activated receptor gamma (PPARG) in promoting in vitro maturation (IVM) and lipid metabolism of porcine oocytes. Our results showed that expression changes in PPARG influenced IVM and the lipid droplet content of porcine oocytes. Moreover, c-Jun-N-terminal kinase (JNK) inhibitor modified the effect of PPARG agonist on IVM and lipid droplet content of porcine oocytes, and Ber significantly reduced lipid droplet content.
View Article and Find Full Text PDFBackground: The berberine (Ber) is an isoquinoline alkaloid compound extracted from Rhizoma coptidis and has the effect that reduces adipose. MicroRNA-192 (miR-192) is related to fat metabolism. However, the relevant mechanism of berberine on lipid metabolism during in vitro maturation (IVM) of porcine oocytes remains unclear.
View Article and Find Full Text PDFTo explore the repair effect of lycium barbarum polysaccharide (LBP) on ovarian injuries induced by repeated superovulation in mice, a model of ovarian injury was established, and ovarian repair was assessed after intragastric administration of LBP. The oocyte quality and blastocyst rates of pronuclear embryos in vitro were observed. The levels of 8-hydroxydeoxyguanosine (8-OHdG) and lipid peroxide (LPO) in ovarian tissue were measured, and ovarian damage was assessed in paraffin sections.
View Article and Find Full Text PDFThe effect of berberine (Ber) on in vitro fertilization (IVF) embryo development in pigs and the associated differential expression of microRNAs (miRNAs) in the embryo were investigated. NCSU-23 embryonic culture medium was used for a control group, while NCSU-23 embryonic culture medium added with Ber was used for a Ber group. The embryo development rates in these groups were determined, and the zygotes, 4- and 8-cell embryos, and blastocysts were collected for cDNA microarray analysis.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs), once thought to be nonfunctional, have recently been shown to participate in the multilevel regulation of transcriptional, posttranscriptional and epigenetic modifications and to play important roles in various biological processes, including immune responses. However, the expression and roles of lncRNAs in invertebrates, especially nonmodel organisms, remain poorly understood. In this study, by comparing a transcriptome to the PfIRF-2 genomic structure, we identified lncIRF-2 in the PfIRF-2 genomic intron.
View Article and Find Full Text PDF