Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems.
View Article and Find Full Text PDFChromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed.
View Article and Find Full Text PDFFenton and photoassisted Fenton degradation of ordinary hydrophobic cross-linked polystyrene microspheres and sulfonated polystyrene beads (DOWEX 50WX8) have been attempted. While the Fenton process was not able to degrade these polystyrene materials, photoassisted Fenton reaction (mediated by broad-band UV irradiation from a 250 W Hg(Xe) light source) was found to be efficient in mineralizing cross-linked sulfonated polystyrene materials. The optimal loadings of the Fe(III) catalyst and the H(2)O(2) oxidant for such a photoassisted Fenton degradation were found to be 42 μmol-Fe(III) and 14.
View Article and Find Full Text PDFWater hyacinth roots were employed as a biosorbent to remove Cu(II) in aqueous media. Nitrogen adsorption/desorption analysis revealed that the biosorbent was mesoporous with a relatively small surface area. Equilibrium biosorption isotherms showed that the water hyacinth roots possessed a high affinity and sorption capacity for Cu(II) with a monolayer sorption capacity of 22.
View Article and Find Full Text PDFAcidogenesis of cattail using rumen cultures was carried out to produce volatile fatty acids (VFA) in this study. The influences of pH and substrate concentration on cattail degradation, VFA yield and microbial growth were investigated by using response surface methodology (RSM). Experimental results showed that a low substrate concentration and pH of 6.
View Article and Find Full Text PDFThe reductive degradation of nitrobenzene (NB) by zero-valent iron was investigated. Experimental results showed that the degradation of NB was influenced by pH and NB concentration. The optimum pH value was found to be 3.
View Article and Find Full Text PDF