Publications by authors named "Jia-Bao Yi"

Monolayer WTe is predicted to be a quantum spin Hall insulator (QSHI), and its quantized edge transport has recently been demonstrated. However, one of the essential properties of a QSHI, spin-momentum locking of the helical edge states, has yet to be experimentally validated. Here, we measure and observe gate-controlled anisotropic magnetoresistance (AMR) in monolayer WTe devices.

View Article and Find Full Text PDF

Magnetic van der Waals (vdW) materials are poised to enable all-electrical control of magnetism in the two-dimensional limit. However, tuning the magnetic ground state in vdW itinerant ferromagnets by voltage-induced charge doping remains a significant challenge, due to the extremely large carrier densities in these materials. Here, by cleaving the vdW itinerant ferromagnet FeGeTe (F5GT) into 5.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrasmall ferrite nanoparticles (UFNPs) are being developed as advanced probes for MRI that can noninvasively visualize biological processes.
  • A new type of UFNP, engineered with a core-shell structure (ZnFeO@ZnMnFeO), shows significant improvements in relaxivity, making it more effective than existing options like Gd-DTPA.
  • By attaching a targeting agent (AMD3100), these nanoparticles can more sensitively detect small lung metastases, representing a step forward in molecular imaging technology.
View Article and Find Full Text PDF

Nanoporous carbon (HNC) with a flake and nanotubular morphology and a high specific surface area is prepared by using natural halloysite nanotubes (HNTs), a low-cost and naturally available clay material with a mixture of flaky and tubular morphology. A controlled pore-filling technique is used to selectively control the porosity, morphology, and the specific surface area of the HNC. Activated nanoporous carbon (AHNC) with a high specific surface area is also prepared by using HNT together with the activation process with zinc chloride (ZnCl).

View Article and Find Full Text PDF

High magnetization materials are in great demand for the fabrication of advanced multifunctional magnetic devices. Notwithstanding this demand, the development of new materials with these attributes has been relatively slow. In this work, we propose a new strategy to achieve high magnetic moments above room temperature.

View Article and Find Full Text PDF

Five percent Fe-doped InO films were deposited using a pulsed laser deposition system. X-ray diffraction and transmission electron microscopy analysis show that the films deposited under oxygen partial pressures of 10 and 10 Torr are uniform without clusters or secondary phases. However, the film deposited under 10 Torr has a Fe-rich phase at the interface.

View Article and Find Full Text PDF

Large-scale synthesis of monodisperse ultrasmall metal ferrite nanoparticles as well as understanding the correlations between chemical composition and MR signal enhancement is critical for developing next-generation, ultrasensitive T magnetic resonance imaging (MRI) nanoprobes. Herein, taking ultrasmall MnFeO nanoparticles (UMFNPs) as a model system, we report a general dynamic simultaneous thermal decomposition (DSTD) strategy for controllable synthesis of monodisperse ultrasmall metal ferrite nanoparticles with sizes smaller than 4 nm. The comparison study revealed that the DSTD using the iron-eruciate paired with a metal-oleate precursor enabled a nucleation-doping process, which is crucial for particle size and distribution control of ultrasmall metal ferrite nanoparticles.

View Article and Find Full Text PDF

Uniform wüstite Fe0.6 Mn0.4 O nanoflowers have been successfully developed as an innovative theranostic agent with T1 -T2 dual-mode magnetic resonance imaging (MRI), for diagnostic applications and therapeutic interventions via magnetic hyperthermia.

View Article and Find Full Text PDF

In the present study, quantum dot (QD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2* effect where the r2* relaxivity and r2*/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide.

View Article and Find Full Text PDF

The present study reports room-temperature ferromagnetic behaviors in three-dimensional (3D)-aligned thiol-capped single-crystalline ZnO nanowire (NW) and nanotube (NT) arrays as well as polycrystalline ZnO NT arrays. Besides the observation of height-dependent saturation magnetization, a much higher M(s) of 166 microemu cm(-2) has been found in NTs compared to NWs (36 microemu cm(-2)) due to larger surface area in ZnO NTs, indicating morphology-dependent magnetic properties in ZnO NW/NT systems. Density functional calculations have revealed that the origin of ferromagnetism is mainly attributed to spin-polarized 3p electrons in S sites and, therefore, has a strong correlation with Zn-S bond anisotropy.

View Article and Find Full Text PDF

We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates.

View Article and Find Full Text PDF