Molybdenum disulfide, as an electronic highly-adjustable catalysts material, tuning its electronic structure is crucial to enhance its intrinsic hydrogen evolution reaction (HER) activity. Nevertheless, there are yet huge challenges to the understanding and regulation of the surface electronic structure of molybdenum disulfide-based catalysts. Here we address these challenges by tuning its electronic structure of phase modulation synergistic with interfacial chemistry and defects from phosphorus or sulfur implantation, and we then successfully design and synthesize electrocatalysts with the multi-heterojunction interfaces (e.
View Article and Find Full Text PDFMetal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.
View Article and Find Full Text PDFElectrochemical carbon monoxide reduction is a promising strategy for the production of value-added multicarbon compounds, albeit yielding diverse products with low selectivities and Faradaic efficiencies. Here, copper single atoms anchored to TiCT MXene nanosheets are firstly demonstrated as effective and robust catalysts for electrochemical carbon monoxide reduction, achieving an ultrahigh selectivity of 98% for the formation of multicarbon products. Particularly, it exhibits a high Faradaic efficiency of 71% towards ethylene at -0.
View Article and Find Full Text PDFAccurate determination of the atomic spatial configuration of Frenkel defects is important for understanding the mechanism and fully utilizing these defects to optimize the material properties. In this study, aberration-corrected scanning transmission electron microscopy (STEM) was used to identify the Fe vacancies and Fe Frenkel defect pairs, which have not been previously investigated, in NiFe2O4 (NFO). The spatial distribution of these point defects is determined by comparing the experimental and simulated images, where the experimental image intensities are consistent with the calculated image intensities.
View Article and Find Full Text PDF