Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most debilitating adverse effects caused by chemotherapy drugs such as paclitaxel, oxaliplatin and vincristine. It is untreatable and often leads to the discontinuation of cancer therapy and a decrease in the quality of life of cancer patients. It is well-established that neuroinflammation and the activation of immune and glial cells are among the major drivers of CIPN.
View Article and Find Full Text PDFGlial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs.
View Article and Find Full Text PDFBackground And Purpose: Acid-sensing ion channels (ASICs) are primary acid sensors in mammals, with the ASIC1b and ASIC3 subtypes being involved in peripheral nociception. The antiprotozoal drug diminazene is a moderately potent ASIC inhibitor, but its analgesic activity has not been assessed.
Experimental Approach: We determined the ASIC subtype selectivity of diminazene and the mechanism by which it inhibits ASICs using voltage-clamp electrophysiology of Xenopus oocytes expressing ASICs 1-3.
Vet Immunol Immunopathol
January 2011
Mammary tumors are among the most common neoplastic conditions in dogs, and there is evidence that inflammation plays a role in the development of some tumor types in dogs. The complement system is a major participant in the inflammatory process and the complement activation component, C5a, is a potent inflammatory peptide. This study investigated the mRNA expression of the major receptor for C5a (C5aR; CD88) in histopathological samples of canine mammary tumors by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) using canine-specific primers for CD88.
View Article and Find Full Text PDF