Background: Avascular necrosis of femoral head and malunion are frequent post-operative complications of femoral neck fractures. To optimize surgical techniques, this study aims to provide a microstructural understanding of intraosseous microvasculature and the trabecular bone of the femoral head and neck.
Study Design: This anatomical study analyzed twenty-eight femora from fourteen cadaveric beagles.
Qingshui River is a vital source for human life and industrial production in Zhangjiakou City. Determination of the formation mechanism of the main hydrochemical ions is important for the sustainable development and utilization of surface water resources in the Qingshui River. In view of this, 20 surface water samples were collected from the agricultural and urban reaches of the Qingshui River in July 2022.
View Article and Find Full Text PDFPoor chemotherapy efficacy in pancreatic cancer is attributed to limited drug permeation caused by the dense extracellular matrix (ECM) and drug degradation induced by tumor-colonizing bacteria. Here, a tumor-targeting probiotic-nanosystem is elaborately designed to remodulate ECM and selectively regulate tumor-colonizing bacteria for improving chemo-immunotherapy against pancreatic cancer. Specifically, drug-loaded liposomes are conjugated with Clostridium Butyricum (CB) via matrix metalloproteinase-2 (MMP-2)-responsive peptide to construct a probiotic-nanosystem.
View Article and Find Full Text PDFDiet-induced metabolic dysfunction steatotic liver disease (MASLD) is also called as non-alcoholic fatty liver disease (NAFLD) with limited effective strategies available. We previously have shown that chikusetsusaponin IVa (CHS), a dietary saponin from herbs in South American known for their metabolic benefits, mitigates diet-induced diabetes. In this study we investigated the beneficial effects of CHS on MASLD and the underlying mechanisms.
View Article and Find Full Text PDFThe selective photoreduction of CO in aqueous media based on earth-abundant elements only, is today a challenging topic. Here we present the anchoring of discrete molecular catalysts on organic polymeric semiconductors via covalent bonding, generating molecular hybrid materials with well-defined active sites for CO photoreduction, exclusively to CO in purely aqueous media. The molecular catalysts are based on aryl substituted Co phthalocyanines that can be coordinated by dangling pyridyl attached to a polymeric covalent triazine framework that acts as a light absorber.
View Article and Find Full Text PDFNoble-metal-free CO reduction systems based on cobalt phthalocyanine () and its derivatives have demonstrated remarkable photocatalytic performances; however, their structure-activity relationship with electronic tuning remains unexplored. Herein, we now provide a systematic study to investigate the electron effects of substituents on the family in photocatalytic CO reduction, where a Cu(I) heteroleptic photosensitizer is utilized. The highest performance can be achieved using cobalt tetracarboxylphthalocyanine in light-driven CO-to-CO reduction, with a maximum turnover number of 2950 at 450 nm and an outstanding apparent quantum yield of 63.
View Article and Find Full Text PDFHypoxia and lactate-overexpressed tumor microenvironment always lead to poor therapeutic effect of radiotherapy. Here, platinum nanoparticles-embellished hafnium metal-organic framework (Hf-MOF-Pt NPs) were elaborately integrated with Shewanella oneidensis MR-1 (SO) to construct an engineered biohybrid platform (SO@Hf-MOF-Pt) for enhancing radiotherapy. Benefiting from the tumor-targeting and metabolic respiration characteristics of SO, SO@Hf-MOF-Pt could enrich in tumor sites and continuously metabolize the overexpressed lactate, which specifically downregulated the expression of hypoxia-inducible factor (HIF-1α), thereby relieving the radiosuppressive tumor microenvironment to some extent.
View Article and Find Full Text PDFThe practical application of aqueous Zn metal batteries (AZMBs) is impeded by inferior reversibility and stability of Zn metal anode (ZMA) originated from side reactions and dendrite growth. Herein, anion receptor l-Proline (LP) is selected to simultaneously manipulate solvation chemistry and electric double layer (EDL) for constructing dendrite-free and stable AZMBs with an ultra-high depth of discharge (DOD of 100 %) and low negative/positive capacity ratio (N/P of 1.1).
View Article and Find Full Text PDFHere, a novel paired electrolysis system is constructed, where fluorine-doped tin oxide glass serves as the anode for the water oxidation reaction to produce hydrogen peroxide (HO), and cobalt phthalocyanine (CoPc)/carbon nanotube (CNT) loaded carbon paper as the cathode for CO reduction to generate CO. This system demonstrates a high overall energy efficiency of 34%, where a faradaic efficiency exceeding 90% for CO reduction and 60% for water oxidation to HO have been achieved, demonstrating significant energy savings of nearly 40% compared to the respective half-reaction systems.
View Article and Find Full Text PDFObjective: To investigate the clinical effect of magnetic stimulation combined with moxibustion on mild to moderate overactive bladder (OAB) and sexual function in women.
Methods: We enrolled 80 female patients with mild to moderate OAB in this study and equally randomized them into a control and an experimental group, the former treated by magnetic stimulation and the latter by magnetic stimulation combined with moxibustion, both for 8 weeks. We obtained from the patients their OAB syndrome scores (OABSS), 72-hour urination diary (72-h UD) scores, International Consultation on Incontinence Questionnaire - Overactive Bladder (ICIQ-OAB) scores and female sexual function indexes (FSFI), and compared them between the two groups before and after intervention.
Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-π and π-π between the catalyst and the surface.
View Article and Find Full Text PDFThree homoleptic Al(III) complexes (-) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (O), and second, in the isomerization of ()- to ()-stilbene. O was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.
View Article and Find Full Text PDFIntroduction: Marsdeniae tenacissimae Caulis (MTC), a popular traditional Chinese medicine, has been widely used in the treatment of tumor diseases. Paederiae scandens Caulis (PSC), which is similar in appearance to MTC, is a common counterfeit product. It is difficult for traditional methods to effectively distinguish between MTC and PSC.
View Article and Find Full Text PDFImmunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF).
View Article and Find Full Text PDFPlants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration.
View Article and Find Full Text PDFThe electrocatalytic reduction of CO to high-value fuels by renewable electricity is a sustainable strategy, which can substitute for fossil fuels and circumvent climate changes induced by elevated CO emission levels, making the rational design of versatile electrocatalysts highly desirable. Among all the electrocatalytic materials used in the CO reduction reaction, nickel phthalocyanine (NiPc)-based electrocatalysts have attracted considerable attention recently because of their high CO selectivity and catalytic activity. Herein, we review the latest advances in CO electroreduction to CO catalyzed by immobilized NiPc and its derivatives on diverse surfaces.
View Article and Find Full Text PDFThe development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes.
View Article and Find Full Text PDFOne key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers.
View Article and Find Full Text PDFObjective: To investigate the application effect of functional acupoint electrical stimulation combined with tadara irregular administration in middle-aged and elderly patients with erectile dysfunction (ED), and to provide reference for clinical treatment.
Methods: A total of 40 middle-aged and elderly patients with ED admitted to the pelvic floor Center of our hospital from March 2021 to March 2023 were randomly divided into two groups with 20 cases in each group.The control group was treated with tadalafil regularly, and the observation group was treated with functional acupoint electrical stimulation on the basis of this treatment.
Proc Natl Acad Sci U S A
April 2024
The aim of the present study was to compare the differences in joint coordination patterns and variability in the lower extremity between the first and second landing phases of the drop jump. Eighteen resistance-trained men (age: 22.8 ± 1.
View Article and Find Full Text PDFMonodispersed microspheres play a major role in optical science and engineering, providing ideal building blocks for structural color materials. However, the method toward high solid content (HSC) monodispersed microspheres has remained a key hurdle. Herein, a facile access to harvest monodispersed microspheres based on the emulsion polymerization mechanism is demonstrated, where anionic and nonionic surfactants are employed to achieve the electrostatic and steric dual-stabilization balance in a synergistic manner.
View Article and Find Full Text PDF