Publications by authors named "Jia Wei Chew"

Article Synopsis
  • * The novel PDTAN membrane demonstrated exceptional chiral separation efficiency, particularly rejecting D-phenylalanine (D-Phe) at a temperature of 40 °C, while showing significant stability and reduced fouling compared to prior methods.
  • * Temperature-induced structural changes in BSA from α-helix to β-sheet enhance selective recognition of D-Phe, while also lowering interactions that lead to membrane fouling, thereby improving the overall durability and effectiveness of chiral separation.
View Article and Find Full Text PDF

Due to beneficial properties like non-flammability, thermal stability, low melting point and low vapor pressure, ionic liquids (ILs) have gained great interest from engineers and researchers in the past decades to replace conventional solvents. The superior characteristics of ILs make them promising for applications in fields as wide-ranging as pharmaceuticals, foods, nanoparticles synthesis, catalysis, electrochemistry and so on. To alleviate the high cost and environmental impact of ILs, various technologies have been reported to recover and purify the used ILs, as well as recycling the ILs.

View Article and Find Full Text PDF

Incorporating two different nanoparticles in nanocomposite films is promising as their synergistic effects could significantly enhance polymer performance. Our previous work conferred the remarkable antimicrobial (AM) properties of the polylactic acid (PLA)-based film using optimal formulations of synergistic graphene oxide (GO)/zinc oxide (ZnO) nanocomposites. This study further explores the release profile of GO/ZnO nanocomposite and their impact on the antimicrobial properties.

View Article and Find Full Text PDF

Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation.

View Article and Find Full Text PDF

Due to its unique advantages such as flexible planar structure, ultrahigh specific surface area, superior electrical conductivity and electrical double-layer capacitance in theory, graphene has unparalleled virtues compared with other carbon materials. This review summarizes the recent research progress of various graphene-based electrodes on ion electrosorption fields, especially for water desalination utilizing capacitive deionization (CDI) technology. We present the latest advances of graphene-based electrodes, such as 3D graphene, graphene/metal oxide (MO) composites, graphene/carbon composites, heteroatom-doped graphene and graphene/polymer composites.

View Article and Find Full Text PDF

Membrane fouling remains one of the most critical drawbacks in membrane filtration processes. Although the effect of various operating parameters-such as flow velocity, concentration, and foulant size-are well-studied, the impact of particle shape is not well understood. To bridge this gap, this study investigated the effect of polystyrene particle sphericity (sphere, peanut and pear) on external membrane fouling, along with the effect of particle charge (unmodified, carboxylated, and aminated).

View Article and Find Full Text PDF

Membrane-based chiral separation has emerged as a promising method for the efficient separation of chiral molecules. Ideally, the membranes should be able to achieve good enantioselectivity, while maintaining high stability in harsh solvents. However, engineering membranes for chiral molecular separation in harsh organic solvent environments is still a big challenge.

View Article and Find Full Text PDF

Hydrogel composites with skin layer that allows fast and selective rejection of molecules possess high potential for numerous applications, including sample preconcentration for point-of-use detection and analysis. The stimuli-responsive hydrogels are particularly promising due to facile regenerability. However, poor adhesion of the skin layer due to swelling-degree difference during continuous swelling/deswelling of the hydrogel hinders its further development.

View Article and Find Full Text PDF

Most adsorption applications involve mixtures, yet accurate predictions of the adsorption of mixtures remain challenging, in part due to the inability to account for the interplay between adsorbate-adsorbate and adsorbate-adsorbent interactions. This study involves a comprehensive Monte Carlo simulation of the adsorption of two groups of mixtures (namely, supercritical and subcritical ones) in carbon nanopores and quantifies Henry's constants, isotherms, energetics, and density distributions in the pores. When interadsorbate interactions are negligible (e.

View Article and Find Full Text PDF

Dispersants reduce oil-water interfacial tension making the separation of oil-water emulsions challenging. In this study, crude oil stabilized by the dispersant, Corexit EC9500A, was emulsified in synthetic sea water using a range of Corexit/crude oil concentration ratios (up to 10% by volume). With an interfacial tension of only 8.

View Article and Find Full Text PDF

In this study, we report a facile preparation of an organic solvent-resistant membrane through the formation of urethane bonds between polycarbonate and polyethyleneimine groups. The modified membrane was further cross-linked with 1,4-butanediol diglycidyl ether (BDG) to enhance its solvent resistance as well as its thermal and mechanical stability. The cross-linked polycarbonate membranes exhibited improved solvent resistance with various organic solvents, giving a maximum swelling degree of 6%.

View Article and Find Full Text PDF

Assembling graphene oxide nanoribbons (GONRs) into three-dimensional (3D) materials with controllable and desired structure is an effective way to expand their structural features and enable their practical applications. In this work, an ultralight 3D porous amidoxime functionalized graphene oxide nanoribbons aerogel (PAO/GONRs-A) was prepared via solvothermal polymerization method using acrylonitrile as monomer and GONRs as solid matrices for selective separation of uranium(VI) from water samples. The PAO/GONRs-A possessed a high nitrogen content (13.

View Article and Find Full Text PDF

Sulfur dioxide (SO2) in flue gases emitted from fossil fuel power plants dramatically reduces the CO2 capture efficiency via adsorption, which is due to the potential reaction of SO2 with basic functional groups on the adsorbent. Physisorption rather than chemisorption is preferred, because adsorbents can be more easily regenerated by either reducing the pressure or increasing the temperature. Carbon is a suitable adsorbent for SO2 capture and widely used, and therefore it is important to study SO2 adsorption onto carbon with the Monte Carlo simulation to provide microscopic details to demarcate the roles of the basal plane of the graphene layer and the functional groups in adsorption.

View Article and Find Full Text PDF

The reclamation of municipal wastewater to obtain high-grade product water is a growing need due to the pressing global water shortage. However, the existing municipal wastewater treatment plants (WWTPs) with the conventional activated sludge process as a core is not a sustainable engineering solution towards future water sustainability. To tackle such an emerging water-wastewater nexus, a ferrous-assisted aerobic granular sludge membrane bioreactor and reverse osmosis (AGSMBR-RO) process was developed for municipal wastewater reclamation.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) with hydrophobic and atomically smooth inner channels are promising for building ultrahigh-flux nanofluidic platforms for energy harvesting, health monitoring, and water purification. Conventional wisdom is that nanoconfinement effects determine water transport in CNTs. Here, using full-atomistic molecular dynamics simulations, it is shown that water transport behavior in CNTs strongly correlates with the electronic properties of single-walled CNTs (metallic (met) vs semiconducting (s/c)), which is as dominant as the effect of nanoconfinement.

View Article and Find Full Text PDF

A dynamic membrane (DM) is a layer of particles deposited via permeation drag onto a conventional membrane, such that the deposited particles act as a secondary membrane that minimizes fouling of the primary membrane to lower transmembrane pressures (TMP) and enable higher permeate fluxes. Since the first DM was created in 1966 at the Oak Ridge National Laboratory, numerous studies have reported synthesis of DMs using various materials and explored their abilities to perform reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF). DMs are classified into two categories, namely, (i) self-formed, whereby the feed constituents form the DM; and (ii) pre-deposited, whereby the DM is formed by a layer of particles other than the feed prior to introduction of the feed.

View Article and Find Full Text PDF

Herein, the precursor polyphosphazene was synthesized by the polymerization of hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS). The adsorbent which was codoped with N, P and S (amidate-CS) was developed from the precursor by using the carbonization method. The images of Scanning electron microscope (SEM) and Transmission electron microscope (TEM) indicate that the amidate-CS possessed porous graphene-like carbon lamellar structure.

View Article and Find Full Text PDF

Hypotheses: Oil droplet stability and electrical charge, and membrane's affinity for oil govern droplet attachment to a membrane surface. Moderate droplet-surface affinity encourages surface coalescence and removal of droplets to help maintain the membrane relatively oil-free.

Experiments: Droplet attachment onto model nanofiltration membranes was studied, in situ and in real time, using the Direct Observation Through the Membrane method.

View Article and Find Full Text PDF

The large volumes of oily wastewater generated by various industries, such as oil and gas, food and beverage, and metal processing, need to be de-oiled prior to being discharged into the environment. Compared to conventional technologies such as dissolved air flotation (DAF), coagulation or solvent extraction, membrane filtration can treat oily wastewater of a much broader compositional range and still ensure high oil removals. In the present review, various aspects related to the practical implementation of membranes for the treatment of oily wastewater are summarized.

View Article and Find Full Text PDF

Fast pyrolysis is a promising technology for the production of renewable fuels and chemicals from lignocellulosic biomass. The product distribution (bio-oil, char) and the composition of bio-oil are significantly influenced by the presence of naturally occurring alkali and alkaline-earth metals (AAEMs). In this paper, we investigate, at the molecular level, the influence of Na(I), K(I), Ca(II), and Mg(II) ions on glycosidic bond breaking reactions using density functional theory.

View Article and Find Full Text PDF

Water and energy are key sustainability issues that need to be addressed. Photocatalysis represents an attractive means to not only remediate polluted waters, but also harness solar energy. Unfortunately, the employment of photocatalysts remains a practical challenge in terms of high cost, low efficiency, secondary pollution and unexploited water matrices influence.

View Article and Find Full Text PDF

In this study, an alternative second-order boundary scheme is proposed under the framework of the convection-diffusion lattice Boltzmann (LB) method for both straight and curved geometries. With the proposed scheme, boundary implementations are developed for the Dirichlet, Neumann and linear Robin conditions in a consistent way. The Chapman-Enskog analysis and the Hermite polynomial expansion technique are first applied to derive the explicit expression for the general distribution function with second-order accuracy.

View Article and Find Full Text PDF

MXene, an important and increasingly popular category of postgraphene 2D nanomaterials, has been rigorously investigated since early 2011 because of advantages including flexible tunability in element composition, hydrophobicity, metallic nature, unique in-plane anisotropic structure, high charge-carrier mobility, tunable band gap, and favorable optical and mechanical properties. To fully exploit these potentials and further expand beyond the existing boundaries, novel functional nanostructures spanning monolayer, multilayer, nanoparticles, and composites have been developed by means of intercalation, delamination, functionalization, hybridization, among others. Undeniably, the cutting-edge developments and applications of clay-inspired 2D MXene platform as electrochemical electrode or photo-electrocatalyst have conferred superior performance and have made significant impact in the field of energy and advanced catalysis.

View Article and Find Full Text PDF

Materials of perovskite-type structure have attracted considerable attention for their applications in photocatalysis. In this study, a novel composite of p-type LaFeO microsphere coated with n-type nanosized graphitic carbon nitride nanosheets was constructed by the quasi-polymeric calcination method with the aid of electrostatic self-assembly interaction. Results indicate that the LaFeO/g-CNp-n heterostructured photocatalyst obtained, in contrast to the pure constituents, enabled improved visible-light absorption, and more efficient separation and migration of charge carriers via solid p-n heterojunction interfacial effect.

View Article and Find Full Text PDF