Publications by authors named "Jia Shou"

The regulation of target genes by distal enhancers usually determines the fate and function of cells. Active enhancers in specific regions of chromatin may transcribe bidirectionally to produce long non-coding enhancer RNA (eRNA) to regulate gene expression. We recently found that an antisense enhancer eRNA PEARL (Pcdh eRNA associated with R-loop formation) regulates gene expression of members of the Pcdhα cluster via R-loop formation.

View Article and Find Full Text PDF

Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries.

View Article and Find Full Text PDF

Lymph node metastasis (LNM) of lung cancer is an important factor associated with prognosis. Dysregulated microRNAs (miRNAs) are becoming a new powerful tool to characterize tumorigenesis and metastasis. We have developed and validated a miRNA disease signature to predict LNM in lung adenocarcinoma (LUAD).

View Article and Find Full Text PDF

Chromosomal rearrangements including large DNA-fragment inversions, deletions, and duplications by Cas9 with paired sgRNAs are important to investigate genome structural variations and developmental gene regulation, but little is known about the underlying mechanisms. Here, we report that disrupting CtIP or FANCD2, which have roles in alternative non-homologous end joining, enhances precise DNA-fragment deletion. By analyzing the inserted nucleotides at the junctions of DNA-fragment editing of deletions, inversions, and duplications and characterizing the cleaved products, we find that Cas9 endonucleolytically cleaves the noncomplementary strand with a flexible scissile profile upstream of the -3 position of the PAM site in vivo and in vitro, generating double-strand break ends with 5' overhangs of 1-3 nucleotides.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations.

View Article and Find Full Text PDF

CTCF and the associated cohesin complex play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes.

View Article and Find Full Text PDF

The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs.

View Article and Find Full Text PDF