Publications by authors named "Jia Niu"

Article Synopsis
  • The study focuses on how riparian zones, crucial for nitrate removal, are affected by natural organic compounds and their influence on microbial communities, highlighting the need for more research in this area.
  • Different carbon sources were tested for their effectiveness in degrading nitrate, with butyric acid showing the highest efficiency, although it led to nitrogen cycling rather than complete removal.
  • Microbial communities responded variably to carbon conditions, with some promoting denitrification and others facilitating nitrification, indicating that carbon source selection significantly impacts nitrogen cycling processes in these environments.
View Article and Find Full Text PDF

The demands of a sustainable chemical industry are a driving force for the development of heterogeneous catalytic platforms exhibiting facile catalyst recovery, recycling, and resilience to diverse reaction conditions. Homogeneous-to-heterogeneous catalyst transitions can be realized through the integration of efficient homogeneous catalysts within porous matrices. Herein, we offer a versatile approach to understanding how guest distribution and evolution impact the catalytic performance of heterogeneous host-guest catalytic platforms by implementing the resonance energy transfer (RET) concept using fluorescent model systems mimicking the steric constraints of targeted catalysts.

View Article and Find Full Text PDF

Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization.

View Article and Find Full Text PDF

Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC).

View Article and Find Full Text PDF

Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings.

View Article and Find Full Text PDF

Cellulose serves as a sustainable biomaterial for a wide range of applications in biotechnology and materials science. While chemical and enzymatic glycan assembly methods have been developed to access modest quantities of synthetic cellulose for structure-property studies, chemical polymerization strategies for scalable and well-controlled syntheses of cellulose remain underdeveloped. Here, we report the synthesis of precision cellulose via living cationic ring-opening polymerization (CROP) of glucose 1,2,4-orthopivalates.

View Article and Find Full Text PDF

Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd.

View Article and Find Full Text PDF

Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP.

View Article and Find Full Text PDF

Boron trifluoride (BF ) is a highly corrosive gas widely used in industry. Confining BF in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF corrosion.

View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF
Article Synopsis
  • Sulfation is a common modification in eukaryotic proteins, but understanding its roles has been challenging due to limited methods for controlling its placement in proteins.
  • Researchers have discovered that fluorosulfate can act as a precursor to sulfate, which can be easily converted to sulfate using hydroxamic acid in conditions similar to those in the body.
  • By using light to activate hydroxamic acid, scientists can control the timing and location of sulfate addition in peptides, providing a new tool for studying the functions of sulfation in proteins.
View Article and Find Full Text PDF
Article Synopsis
  • Biofilms in water distribution systems (DWDS) impact water quality, making it essential to study microbial communities for effective control.
  • Researchers collected biofilm samples during infrastructure upgrades in China, revealing archaea mainly in the water main and diverse bacteria across branch pipes and main sections.
  • The study highlighted distinct niches within the biofilm communities, with specific organisms like Nitrosopumilus and Methanobrevibacter dominating in different water main areas, and identified few shared microbial species among samples.
View Article and Find Full Text PDF

The composition, sequence, length and type of glycosidic linkage of polysaccharides profoundly affect their biological and physical properties. However, investigation of the structure-function relationship of polysaccharides is hampered by difficulties in accessing well-defined polysaccharides in sufficient quantities. Here we report a chemical approach to precision polysaccharides with native glycosidic linkages via living cationic ring-opening polymerization of 1,6-anhydrosugars.

View Article and Find Full Text PDF

Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown.

View Article and Find Full Text PDF

Heparan sulfate (HS) glycosaminoglycans are widely expressed on the mammalian cell surfaces and extracellular matrices and play important roles in a variety of cell functions. Studies on the structure-activity relationships of HS have long been hampered by the challenges in obtaining chemically defined HS structures with unique sulfation patterns. Here, we report a new approach to HS glycomimetics based on iterative assembly of clickable disaccharide building blocks that mimic the disaccharide repeating units of native HS.

View Article and Find Full Text PDF

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment.

View Article and Find Full Text PDF
Article Synopsis
  • Lignin is a complex and inedible part of biomass with valuable functional groups, but effectively breaking it down without losing other important components like cellulose is challenging.
  • A new method for selective partial depolymerization creates oligomers instead of monomers, allowing for easier use in chemical processes.
  • This technique uses a specific catalyst to break down lignin, controlling the creation of chemical bonds that enable the formation of recyclable polymer networks, promoting sustainable use of biomass-derived materials.
View Article and Find Full Text PDF

The functions of natural nucleic acids such as DNA and RNA have transcended genetic information carriers and now encompass affinity reagents, molecular catalysts, nanostructures, data storage, and many others. However, the vulnerability of natural nucleic acids to nuclease degradation and the lack of chemical functionality have imposed a significant constraint on their ever-expanding applications. Herein, we report the synthesis and polymerase recognition of a 5-(octa-1,7-diynyl)uracil 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) triphosphate.

View Article and Find Full Text PDF

Degradable vinyl polymers by radical ring-opening polymerization are promising solutions to the challenges caused by non-degradable vinyl plastics. However, achieving even distributions of labile functional groups in the backbone of degradable vinyl polymers remains challenging. Herein, we report a photocatalytic approach to degradable vinyl random copolymers via radical ring-opening cascade copolymerization (rROCCP).

View Article and Find Full Text PDF

A novel class of enyne self-immolative polymers (SIPs) capable of metathesis cascade-triggered depolymerization is reported. Studies on model compounds established 1,6-enyne structures for efficient metathesis cascade reactions. SIPs incorporating the optimized 1,6-enyne motif were prepared via both polycondensation and iterative exponential growth approaches.

View Article and Find Full Text PDF

Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science.

View Article and Find Full Text PDF

The generation of a library of variant genes is a prerequisite of directed evolution, a powerful tool for biomolecular engineering. As the number of all possible sequences often far exceeds the diversity of a practical library, methods that allow efficient library diversification in living cells are essential for in vivo directed evolution technologies to effectively sample the sequence space and allow hits to emerge. While traditional whole-genome mutagenesis often results in toxicity and the emergence of "cheater" mutations, recent developments that exploit the targeting and editing abilities of genome editors to facilitate in vivo library diversification have allowed for precise mutagenesis focused on specific genes of interest, higher mutational density, and reduced the occurrence of cheater mutations.

View Article and Find Full Text PDF