The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.
View Article and Find Full Text PDFAffinity maturation, the progressive increase in serum Ab affinity after vaccination, is an essential process that contributes to an effective humoral response against vaccines and infections. Germinal centers are key for affinity maturation, because they are where B cells undergo somatic hypermutation of their Ig genes in the dark zone before going through positive selection in the light zone via interactions with T follicular helper cells and follicular dendritic cells. In aged mice, affinity maturation has been shown to be impaired after immunization, but whether B cell-intrinsic factors contribute to this defect remains unclear.
View Article and Find Full Text PDFThe magnitude and quality of the germinal center (GC) response decline with age, resulting in poor vaccine-induced immunity in older individuals. A functional GC requires the co-ordination of multiple cell types across time and space, in particular across its two functionally distinct compartments: the light and dark zones. In aged mice, there is CXCR4-mediated mislocalization of T follicular helper (T) cells to the dark zone and a compressed network of follicular dendritic cells (FDCs) in the light zone.
View Article and Find Full Text PDFEmergence from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been facilitated by the rollout of effective vaccines. Successful vaccines generate high-affinity plasma blasts and long-lived protective memory B cells. Here, we show a requirement for T follicular helper (Tfh) cells and the germinal center reaction for optimal serum antibody and memory B cell formation after ChAdOx1 nCoV-19 vaccination.
View Article and Find Full Text PDFVaccines typically protect against (re)infections by generating pathogen-neutralising antibodies. However, as we age, antibody-secreting cell formation and vaccine-induced antibody titres are reduced. Antibody-secreting plasma cells differentiate from B cells either early post-vaccination through the extrafollicular response or from the germinal centre (GC) reaction, which generates long-lived antibody-secreting cells.
View Article and Find Full Text PDFVaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response.
View Article and Find Full Text PDFAntibody production following vaccination can provide protective immunity to subsequent infection by pathogens such as influenza viruses. However, circumstances where antibody formation is impaired after vaccination, such as in older people, require us to better understand the cellular and molecular mechanisms that underpin successful vaccination in order to improve vaccine design for at-risk groups. Here, by studying the breadth of anti-haemagglutinin (HA) IgG, serum cytokines, and B and T cell responses by flow cytometry before and after influenza vaccination, we show that formation of circulating T follicular helper (cTfh) cells was associated with high-titre antibody responses.
View Article and Find Full Text PDFBackground: The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.
View Article and Find Full Text PDFBackground: With the challenges that aging populations pose to health care, interventions that facilitate alleviation of age-related morbidities are imperative. A prominent risk factor for developing age-related morbidities is immunosenescence, characterized by increased chronic low-grade inflammation, resulting in T-cell exhaustion and senescence. Contact with nature and associated physical activities have been shown to boost immunity in older adults and may be promoted in the form of horticultural therapy (HT).
View Article and Find Full Text PDFIntroduction: Although ketamine is one of the commonest medications used in procedural sedation of children, to our knowledge, there is currently no published report on predictors of respiratory adverse events during ketamine sedation in Asian children. We aimed to determine the incidence of and factors associated with respiratory adverse events in children undergoing procedural sedation with intramuscular (IM) ketamine in a paediatric emergency department (ED) in Singapore.
Methods: A retrospective analysis was conducted of all children who underwent procedural sedation with IM ketamine in the paediatric ED between 1 April 2013 and 31 October 2017.
Zika virus (ZIKV) is a mosquito-borne virus that has garnered a lot of attention in recent years, due to the explosive epidemic from 2014 to 2016. Since its introduction in the Americas in late 2014, ZIKV has spread at an unprecedented rate and scale throughout the world and infected millions of people. Its infection has also been associated with severe neurological disorders like Guillain-Barré syndrome and microcephaly in fetuses.
View Article and Find Full Text PDF