Publications by authors named "Jia Hui Luo"

Adipose tissue macrophages (ATMs) play important roles in maintaining adipose tissue homeostasis and orchestrating metabolic inflammation. Given the extensive functional heterogeneity and phenotypic plasticity of ATMs, identification of the authentically pathogenic ATM subpopulation under obese setting is thus necessitated. Herein, we performed single-nucleus RNA sequencing (snRNA-seq) and unraveled a unique maladaptive ATM subpopulation defined as ATF4PDIA3ACSL4CCL2 inflammatory and metabolically activated macrophages (iMAMs), in which PDIA3 is required for the maintenance of their migratory and pro-inflammatory properties.

View Article and Find Full Text PDF

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program.

View Article and Find Full Text PDF

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28.

View Article and Find Full Text PDF

Three new cadinene sesquiterpenoids -, were isolated from the aerial sections of using various chromatographic techniques. Their structures were characterised by comprehensive spectroscopic investigations (including 1D, 2D-NMR and HRMS), and single crystal X-ray diffraction. The cytotoxic activity of new compounds - were evaluated by testing tumour growth inhibitory rate against five human tumour cell lines, HL-60, A-549, SMMC-7721, MDA-MB-231, and SW480.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed.

View Article and Find Full Text PDF

The chemical analysis on the aerial sections of Eupatorium adenophorum Spreng. resulted in the identification of four unprecedented 5/5 fused bicyclosesquiterpenoids, eupatorid A (1), and its analogues named eupatorester A-C (2-4) using various chromatographic techniques. Their structures were unambiguously confirmed by detailed spectroscopic investigations (including 1D, 2D-NMR and HRMS), and single crystal X-ray diffraction.

View Article and Find Full Text PDF

The role of tumor-associated macrophages (TAMs), along with the regulatory mechanisms underlying distinct macrophage activation states, remains poorly understood in prostate cancer (PCa). Herein, we report that PCa growth in mice with macrophage-specific Ubc9 deficiency is substantially suppressed compared with that in wild-type littermates, an effect partially ascribed to the augmented CD8+ T cell response. Biochemical and molecular analyses revealed that signal transducer and activator of transcription 4 (STAT4) is a crucial UBC9-mediated SUMOylation target, with lysine residue 350 (K350) as the major modification site.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disease resulted from the unrestrained inflammatory attack towards the insulin-producing islet β cells. Although the exact etiology underlying T1D remains elusive, viral infections, especially those specific strains of enterovirus, are acknowledged as a critical environmental cue involved in the early phase of disease initiation. Viral infections could either directly impede β cell function, or elicit pathological autoinflammatory reactions for β cell killing.

View Article and Find Full Text PDF

Macrophages are widely distributed in various tissues and organs. They not only participate in the regulation of innate and adaptive immune response, but also play an important role in tissue homeostasis. Dysregulation of macrophage function is closely related to the initiation, development and prognosis of multiple diseases, including infection and tumorigenesis.

View Article and Find Full Text PDF

Aloperine is an anti-inflammatory compound isolated from the Chinese herb Previously, our group has reported that the generation of induced Treg was promoted by aloperine treatment in a mouse colitis model. However, the effect of aloperine on effector T cell subsets remains unclear. We therefore carefully examined the effect of aloperine on the differentiation of major subsets of T helper cells.

View Article and Find Full Text PDF

Cyclocarya paliurus (CP) extracts have been shown to lower sugar and lipid levels in blood, but the material basis is not clear. We analyzed CP aqueous extracts using high-performance liquid chromatography "fingerprinting", checked their pharmacological parameters using virtual screening, and undertook molecular docking and molecular dynamics simulations. Also, the inhibitory effects of CP components upon α-glucosidase in vitro were evaluated.

View Article and Find Full Text PDF

The immune system is finely tuned to fight against infections, eradicate neoplasms, and prevent autoimmunity. Protein posttranslational modification (PTM) constitutes a molecular layer of regulation to guarantee the proper intensity of immune response. Herein, we report that UBC9-mediated protein SUMOylation plays an essential role in peripheral CD4 T-cell proliferation, but without a perceptible impact on T-cell polarization.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by the unresolved autoimmune inflammation and islet β cell destruction. The islet resident antigen-presenting cells (APCs) including dendritic cells and macrophages uptake and process the β cell-derived antigens to prime the autoreactive diabetogenic T cells. Upon activation, those autoreactive T cells produce copious amount of IFN-γ, TNF-α and IL-1β to induce β cell stress and death.

View Article and Find Full Text PDF

The functional state of T cells is diverse and under dynamic control for adapting to the changes of microenvironment. Reversible protein phosphorylation represents an important post-translational modification that not only involves in the immediate early response of T cells, but also affects their functionality in the long run. Perturbation of global phosphorylation profile and/or phosphorylation of specific signaling nodes result in aberrant T cell activity.

View Article and Find Full Text PDF

Hydrogen sulphide (H S) is the latest identified small gaseous mediator enabled by its lipophilic nature to freely permeate the biological membranes. Initially, H S was recognized by its roles in neuronal activity and vascular relaxation, which makes it an important molecule involved in paracrine signalling pathways. Recently, the immune regulatory function of gasotransmitters, H S in particular, is increasingly being appreciated.

View Article and Find Full Text PDF