Tumor-initiating cells (TIC) often elude conventional cancer treatment, which results in metastasis and cancer relapse. Recently, studies have begun to focus on the TIC population in tumors to provide better therapeutic options. Previously, we have reported the successful development of a TIC-specific probe TiY with the binding target as vimentin.
View Article and Find Full Text PDFTumor initiating cells (TIC) are resistant to conventional anticancer therapy and associated with metastasis and relapse in cancer. Although various TIC markers and their antibodies have been proposed, it is limited to the use of antibodies for in vivo imaging or treatment of TIC. In this study, we discovered heme oxygenase 2 (HMOX2) as a novel biomarker for TIC and developed a selective small molecule probe TiNIR (tumor initiating cell probe with near infrared).
View Article and Find Full Text PDFIn the version of this article originally published, there is an error in Fig. 5a. Originally, 'MAT2A' appeared between 'Methionine' and 'Homocysteine'.
View Article and Find Full Text PDFUnderstanding cellular metabolism holds immense potential for developing new classes of therapeutics that target metabolic pathways in cancer. Metabolic pathways are altered in bulk neoplastic cells in comparison to normal tissues. However, carcinoma cells within tumors are heterogeneous, and tumor-initiating cells (TICs) are important therapeutic targets that have remained metabolically uncharacterized.
View Article and Find Full Text PDFTumor initiating cells (TICs) have been implicated in clinical relapse and metastasis of a variety of epithelial cancers, including lung cancer. While efforts toward the development of specific probes for TIC detection and targeting are ongoing, a universal TIC probe has yet to be developed. We report the first TIC-specific fluorescent chemical probe, TiY, with identification of the molecular target as vimentin, a marker for epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFSelf-renewing tumor-initiating cells (TICs) are thought to be responsible for tumor recurrence and chemo-resistance. Glycine decarboxylase, encoded by the GLDC gene, is reported to be overexpressed in TIC-enriched primary non-small-cell lung carcinoma (NSCLC). GLDC is a component of the mitochondrial glycine cleavage system, and its high expression is required for growth and tumorigenic capacity.
View Article and Find Full Text PDFCRISPR-Cas9 has emerged as a powerful technology that enables ready modification of the mammalian genome. The ability to modulate Cas9 activity can reduce off-target cleavage and facilitate precise genome engineering. Here we report the development of a Cas9 variant whose activity can be switched on and off in human cells with 4-hydroxytamoxifen (4-HT) by fusing the Cas9 enzyme with the hormone-binding domain of the estrogen receptor (ERT2).
View Article and Find Full Text PDF