Publications by authors named "Jia Hong Lu"

Transcription factor EB (TFEB) mainly regulates the autophagy-lysosomal pathway, associated with many diseases, including cancer. However, the role of TFEB in pan-cancer has not been investigated systematically. In this study, we comprehensively analyzed TFEB targets under three stresses in Hela cells by cross-validation of RNA-seq and ChIP-seq.

View Article and Find Full Text PDF

Macrophages play pivotal roles in the regulation of inflammatory responses and tissue repair, making them a prime target for inflammation alleviation. However, the accurate and efficient macrophages targeting is still a challenging task. Motivated by the efficient and specific removal of apoptotic cells by macrophages efferocytosis, a novel biomimetic liposomal system called Effero-RLP (Efferocytosis-mediated Red blood cell hybrid Liposomes) is developed which incorporates the membrane of apoptotic red blood cells (RBCs) with liposomes for the purpose of highly efficient macrophages targeting.

View Article and Find Full Text PDF

Background: Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases.

View Article and Find Full Text PDF

LC3-associated phagocytosis (LAP) is an instrumental machinery for the clearance of extracellular particles including apoptotic cells for the alleviation of inflammation. While pharmacological approaches to modulate LAP for inflammation regulation have been poorly explored, in our study we identified a novel compound, columbamine (COL), which can trigger LAP and enhance efferocytosis in an animal model of colitis to attenuate inflammation. We found that COL directly binds to and biasedly activates FPR2 (formyl peptide receptor 2) to promote efferocytosis and alleviate colitis.

View Article and Find Full Text PDF

Autophagy is a highly conserved physiological process that maintains cellular homeostasis by recycling cellular contents. Selective autophagy is based on the specificity of cargo recognition and has been implicated in various human diseases, including neurodegenerative diseases and cancer. Selective autophagy receptors and modulators play key roles in this process.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER)-mitochondria contacts are critical for the regulation of lipid transport, synthesis, and metabolism. However, the molecular mechanism and physiological function of endoplasmic reticulum-mitochondrial contacts remain unclear. Here, we show that Mic19, a key subunit of MICOS (mitochondrial contact site and cristae organizing system) complex, regulates ER-mitochondria contacts by the EMC2-SLC25A46-Mic19 axis.

View Article and Find Full Text PDF

Cellular activities are carried out vastly by protein complexes but large repertoire of protein complexes remains functionally uncharacterized which necessitate new strategies to delineate their roles in various cellular processes and diseases. Thermal proximity co-aggregation (TPCA) is readily deployable to characterize protein complex dynamics in situ and at scale. We develop a version termed Slim-TPCA that uses fewer temperatures increasing throughputs by over 3X, with new scoring metrics and statistical evaluation that result in minimal compromise in coverage and detect more relevant complexes.

View Article and Find Full Text PDF

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aβ) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH) 1 and 2, as essential enzymes in energy metabolism, contribute to the survival and drug resistance of a variety of solid tumors, especially for colorectal cancer (CRC). However, the underlying molecular mechanism still remains unclear. In this study, IDH1 was identified as a crucial cellular target of a natural-derived anti-CRC small molecule lycorine, using the unbiased thermal proteome profiling (TPP) strategy.

View Article and Find Full Text PDF

Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most common neurodegenerative movement disease. It is featured by abnormal alpha-synuclein (-syn) aggregation in dopaminergic neurons in the substantia nigra. Macroautophagy (autophagy) is an evolutionarily conserved cellular process for degradation of cellular contents, including protein aggregates, to maintain cellular homeostasis.

View Article and Find Full Text PDF

Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic, non-specific, recurrent inflammatory disease, majorly affecting the gastrointestinal tract. Due to its unclear pathogenesis, the current therapeutic strategy for IBD is focused on symptoms alleviation. Autophagy is a lysosome-mediated catabolic process for maintaining cellular homeostasis.

View Article and Find Full Text PDF

(1) Background: Huperzine A, a natural cholinesterase (AChE) inhibitor isolated from the Chinese herb Huperzia Serrata, has been used as a dietary supplement in the United States and a drug in China for therapeutic intervention on Alzheimer's disease (AD). This review aims to determine whether Huperzine A exerts disease-modifying activity through systematic analysis of preclinical studies on rodent AD models. (2) Methods: Sixteen preclinical studies were included based on specific criteria, and the methodological qualities were analyzed by SYRCLE's risk of bias tool.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder for which there is no effective therapeutic strategy. PcActx peptide from the transcriptome of zoantharian has recently been identified and verified as a novel antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). In the present study, we further investigated the neuroprotective potential of PcActx peptide and its underlying mechanism of action, in an N2a/APP cell model of AD.

View Article and Find Full Text PDF
Article Synopsis
  • PS1 F105C mutations are linked to elevated levels of Aβ and tau proteins in human neurons, contributing to Alzheimer's disease.
  • Dysregulation of the mTORC1 signaling pathway in PS1 F105C neurons is observed, particularly decreasing responses to nutrient starvation and leading to impaired autophagy.
  • This study suggests that targeting mTOR with inhibitors like Torin1 could be an effective therapeutic strategy for treating Alzheimer's disease associated with the PS1 mutation.
View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA) is a protein degradation mechanism through lysosomes. By targeting the KFERQ motif of the substrate, CMA is responsible for the degradation of about 30% of cytosolic proteins, including a series of proteins associated with neurodegenerative diseases (NDs). The fact that decreased activity of CMA is observed in NDs, and ND-associated mutant proteins, including alpha-synuclein and Tau, directly impair CMA activity reveals a possible vicious cycle of CMA impairment and pathogenic protein accumulation in ND development.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent and deleterious neurodegenerative disorder characterized by an irreversible and progressive impairment of cognitive abilities as well as the formation of amyloid (A) plaques and neurofibrillary tangles (NFTs) in the brain. By far, the precise mechanisms of AD are not fully understood and no interventions are available to effectively slow down progression of the disease. Autophagy is a conserved degradation pathway that is crucial to maintain cellular homeostasis by targeting damaged organelles, pathogens, and disease-prone protein aggregates to lysosome for degradation.

View Article and Find Full Text PDF

Objective: Women with an elevated basal FSH indicate diminished ovarian reserve and reduced oocyte and embryo numbers. DMSCs are likely to be involved in immune tolerance of pregnancy maintenance. We investigate the effect of follicle-stimulating hormones on the immunomodulatory functions of DMSCs.

View Article and Find Full Text PDF

Macroautophagy/autophagy is the process of self-digestion through the lysosomes; it disassembles unnecessary or dysfunctional long-lived proteins and damaged organelles for the recycling of biomacromolecules. Unfortunately, cancer cells can hijack this mechanism to survive under metabolic stress or develop drug resistance during chemotherapy. Increasing evidence indicates that the combination of autophagy inhibition and chemotherapy is a promising cancer treatment strategy.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) pathway is abnormally activated in lung cancer. However, the anti-lung cancer effect of mTOR inhibitors as monotherapy is modest. Here, we identified that ginsenoside Rh2, an active component of C.

View Article and Find Full Text PDF