IEEE Trans Biomed Circuits Syst
April 2020
A multi-channel biopotential recording analog front-end (AFE) with a fully integrated area-efficient driven-right-leg (DRL) circuit is presented in this paper. The proposed AFE includes 10 channels of low-noise capacitive coupled instrumentation amplifier (CCIA), one shared 10-bit SAR ADC and a fully integrated DRL to enhance the system-level common-mode rejection ratio (CMRR). The proposed DRL circuit senses the common-mode at the CCIA output so that the AFE gain is reused as the DRL loop gain.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
This paper describes an integrated multichannel neural recording analog front end (AFE) with a novel area-efficient driven right leg (DRL) circuit to improve the system common mode rejection ratio (CMRR). The proposed AFE consists of an AC-coupled low-noise programmable-gain amplifier, an area-efficient DRL block and a 10-bit SAR ADC. Compared to conventional DRL circuit, the proposed capacitor-less DRL design achieves 90% chip area reduction with enhanced CMRR performance, making it ideal for multichannel biomedical recording applications.
View Article and Find Full Text PDFIndividuals with tetraplegia lack independent mobility, making them highly dependent on others to move from one place to another. Here, we describe how two macaques were able to use a wireless integrated system to control a robotic platform, over which they were sitting, to achieve independent mobility using the neuronal activity in their motor cortices. The activity of populations of single neurons was recorded using multiple electrode arrays implanted in the arm region of primary motor cortex, and decoded to achieve brain control of the platform.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2015
One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2012
Monitoring blood flow rate inside prosthetic vascular grafts enables an early detection of the graft degradation, followed by the timely intervention and prevention of the graft failure. This paper presents an inductively powered implantable blood flow sensor microsystem with bidirectional telemetry. The microsystem integrates silicon nanowire (SiNW) sensors with tunable piezoresistivity, an ultralow-power application-specific integrated circuit (ASIC), and two miniature coils that are coupled with a larger coil in an external monitoring unit to form a passive wireless link.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2008
A pre-delay reconstruction sigma-delta beamformer (SDBF) was recently proposed to achieve a higher level of integration in ultrasound imaging systems. Nevertheless, the high-order reconstruction filter used in each channel of SDBF makes the beamformer highly complex. The beamformer can be simplified by reconstructing the signal after the delay-and-sum process with only one filter.
View Article and Find Full Text PDF