Publications by authors named "Jia Haifeng"

Background: Alterations in bone metabolism may play a significant role in the early stages of femoral head necrosis, yet the causal relationship remains unclear. This study utilizes a two-sample Mendelian randomization (MR) approach to explore the genetic causal links between biochemical markers of bone metabolism, bone mineral density, and the risk of femoral head necrosis.

Methods: This study utilizes publicly available genome-wide association study (GWAS) datasets, with exposure factors including biochemical bone markers (25OHD, calcium, and alkaline phosphatase) and bone mineral density (measured at the lumbar spine, heel, femoral neck, and total body).

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is a significant chronic joint disease affecting global health, with a study evaluating its trends from 1990 to 2021 across different demographics and regions.
  • The research found a dramatic rise in OA cases, reporting about 466.3 million new cases and a notable prevalence of 606.9 million in 2021, with women being disproportionately affected compared to men.
  • Key risk factors include a high body mass index (BMI), and there's a correlation between increased incidence rates of OA and higher Socio-Demographic Index (SDI) regions, indicating the need for targeted health policies.
View Article and Find Full Text PDF

Simultaneous simulation of urban and rural hydrological processes is important for water environment management of mixed land-uses catchments. However, the discharge paths of pollution in the urban drainage system are not described in traditional catchment hydrological models. In this study, an urban-rural water environment (URWE) model is developed through incorporating the material flow analysis (MFA) and the soil and water assessment tool (SWAT) into a general framework.

View Article and Find Full Text PDF

Background: Osteoporosis is a common metabolic disorder that significantly impacts quality of life in the elderly population. Macrophages play a crucial role in the development of osteoporosis by regulating bone metabolism through cytokine secretion. However, there is a lack of scholarly literature in the field of bibliometrics on this topic.

View Article and Find Full Text PDF

Receptor-like kinase (ERECTA, ER) is essential for mediating growth, development, and stress response signaling pathway in plants. In this study, we investigated the effect of VvER on anthocyanin synthesis as a regulatory factor in transgenic grape callus in response to chilling stress. Results showed that overexpression of VvER reduced the expression of transcription factors VvMYBA1, VvMYB5b, VvMYC2, and VvWDR1, as well as the structural genes VvCHS, VvCHI, VvDFR, VvLDOX, and VvUFGT, and inhibited the anthocyanins synthesis of grape callus at 25℃.

View Article and Find Full Text PDF

Osteoporosis (OP) is a systemic metabolic bone disease that is characterized by decreased bone mineral density and microstructural damage to bone tissue. Recent studies have demonstrated significant advances in the research of programmed cell death (PCD) in OP. However, there is no bibliometric analysis in this research field.

View Article and Find Full Text PDF

During postharvest life, intracellular sugar insufficiency accompanied by insufficient intracellular ATP and NADPH supply, intracellular ROS overaccumulation along with intracellular ABA accumulation arising from water shortage could be responsible for accelerating fruits and vegetables deterioration through promoting SnRK1 and SnRK2 signaling pathways while preventing TOR signaling pathway. By TOR and SnRK1 signaling pathways manipulation, sufficient intracellular ATP and NADPH providing, supporting phenols, flavonoids and anthocyanins accumulation accompanied by improving DPPH, FRAP, and ABTS scavenging capacity by enhancing phenylpropanoid pathway activity, stimulating endogenous salicylic acid accumulation and NPR1-TGA-PRs signaling pathway, enhancing fatty acids biosynthesis, elongation and unsaturation, suppressing intracellular ROS overaccumulation, and promoting endogenous sucrose accumulation could be responsible for chilling injury palliating, fungal decay alleviating, senescence delaying and sensory and nutritional quality preservation in fruits and vegetables. Therefore, TOR and SnRK1 signaling pathways manipulation during postharvest shelf life by employing eco-friendly approaches such as exogenous trehalose and ATP application or engaging biotechnological approaches such as genome editing CRISPR-Cas9 or sprayable double-stranded RNA-based RNA interference would be applicable for improving fruits and vegetables marketability.

View Article and Find Full Text PDF

Surface sediment in urban waterways originates from fine topsoil particles within catchments via surface erosion, often bonded with non-degradable metal(loid)s. This study posited that urban green infrastructures (UGIs) can influence anthropogenic metal(loid) transport from catchment topsoil to waterway sediment by retaining moveable particles. In multiply channeled downtown Suzhou, China, UGIs' spatial patterns were examined in relations to metal(loid)s source (catchment topsoil) - sink (waterway surface sediment) dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • Mimosa bimucronata, a plant native to tropical America, is known for its slow leaf movement and ability to fix nitrogen, but studies have been limited due to a lack of genomic information.
  • Researchers have created a high-quality, chromosome-level genome for M. bimucronata, identifying over 32,000 protein-coding genes and examining structural variations and gene expression linked to leaf movement and nitrogen fixation.
  • This genomic analysis provides valuable resources and insights into the biological mechanisms of leaf movement and nitrogen fixation, serving as a reference for future studies of M. bimucronata and similar legume species.
View Article and Find Full Text PDF

Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO and HO and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya.

View Article and Find Full Text PDF

In the Anthropocene, there is a strong interlinkage among water, energy, and the environment. The water-energy-environment nexus (WEEN) has been vigorously advocated as an emerging development paradigm and a global research agenda. Based on the nexus concept, a framework for the WEEN complex system simulation and risk assessment is developed.

View Article and Find Full Text PDF
Article Synopsis
  • * The study used Local Bivariate Moran Index (LBMI) and geographically weighted regression (GWR) to analyze data from US counties between 2001 and 2021.
  • * Findings show that disaster assistance mainly targets post-disaster recovery, often missing vulnerable communities, highlighting the need for fairer distribution and better mitigation efforts.
View Article and Find Full Text PDF

It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment.

View Article and Find Full Text PDF

Brassinosteroids (BRs) and methyl jasmonate (MeJA) are known for the regulation of plant development, and the crosstalk between them is important for plant growth. However, the interaction between them in the development of postharvest fruit is unresolved. We found that BR treatment enhanced the accumulation of sugar composition and aroma content, reduced the content of organic acids (such as tartaric acid) and promoted the coloring of grape callus.

View Article and Find Full Text PDF

Algal blooms negatively impact the water quality of reservoirs; however, the role of dissolved organic matter (DOM) in bloom formation in reservoirs has not been investigated. Therefore, we assessed the compositions of sediment- and soil-derived DOM and their effects on the growth, physiology, and photosynthetic activity of Microcystis aeruginosa, Anabaena sp., Chlamydomonas sp.

View Article and Find Full Text PDF

Urban flooding is becoming a great global concern due to growing cities, while climate change and urbanization may pose daunting challenges to both environment and humans. The integrated green-grey-blue (IGGB) system has gained interests worldwide to mitigate flood issues, however, how IGGB system acts in urban flood resilience and whether it can address future uncertainties have not been fully understood. In this study, a new framework, which combined an evaluation index system and coupling model, was constructed to quantify urban flood resilience (FR) and its responses to future uncertainties.

View Article and Find Full Text PDF

Despite the significant impacts of natural factors such as rainfall, topography, soil type, and river network as well as agricultural activities on the environmental water quality, little is known about the influence of their temporal and spatial variations in a fluvial-lacustrine watershed. In this study, a whole process accounting method based the export coefficient model (WP-ECM) was first developed to quantify how natural factors and agricultural activities distribution influenced water quality. A case study was performed in a typical fluvial-lacustrine area - Dongting basin, China.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) is a key component of aquatic ecosystem function and biogeochemical processes. The characteristics of DOM in tributaries of the Three Gorges Reservoir (TGR) during the severe spring algal bloom period and their relationship with algal growth are unclear. In this study, the content, composition, and source of DOM in the Pengxi River (PXR) and Ruxi River (RXR) exhibiting typical TGR bloom problems were analyzed using various physicochemical indexes, carbon isotopes, fatty acids, and metagenomics.

View Article and Find Full Text PDF

Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality.

View Article and Find Full Text PDF

While algal blooms occur frequently in lakes and reservoirs worldwide, the effects of dissolved organic matter (DOM) from lakeside and riparian zones on bloom formation are not well understood. In this study, we characterized the molecular composition of DOM from Cynodon dactylon (L.) Pers.

View Article and Find Full Text PDF

Cost-effective runoff control scheme drafting involves localization, multi-sector coordination, and configuration of multifunctional infrastructures. Numerous independent variables, parameters, weights, and objectives make runoff control optimization quantitatively arduous. This study innovatively proposed a multi-objective optimization methodology for green-gray coupled runoff control infrastructure adapting spatial heterogeneity of natural endowment and urban development.

View Article and Find Full Text PDF

Exogenous GAs have an indeterminate effect on root development. Our current study used female papaya to reveal how the roots and rhizosphere respond to the exogenous application of GA by investigating the transcriptome profile in roots, metabolic profile and microbial community in both roots and rhizosphere of GA-treated and control female papaya. The results demonstrated that exogenous GA treatment enhanced female papaya lateral root development, which gave plants physical advantages of water and nutrient uptake.

View Article and Find Full Text PDF

DNA acetylation alters the expression of responsive genes during plant development. In grapes (Vitis vinifera), however, little is known about this regulatory mechanism. In the present study, 'Kyoho' grapes treated with trichostatin A (TSA, a deacetylase inhibitor) were used for transcriptome sequencing and quantitative proteomics analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Urban green infrastructure successfully reduces stormwater runoff volume and pollutants, but its spatial impacts need further understanding.
  • A study in Suzhou, China, involved 144 surface water quality sampling points to assess chemical and sensory aspects, revealing significant spatial variations in water quality, with phosphorus-limited eutrophic conditions present.
  • Results indicated that green spaces, especially within a 100 m buffer along waterways and roadsides, play a crucial role in managing nutrient loads in surface water and should be prioritized in urban planning strategies.
View Article and Find Full Text PDF

Temperature is one of the most important factors regarding fruit postharvest, however its effects in the strawberry fruits quality in postharvest remains to be evaluated. In this study, the effects of cold and heat storage temperature on fruit quality of 'Benihoppe' strawberry were performed. The results showed that different temperatures could affect the metabolism of hormone, anthocyanin, reactive oxygen species (ROS), and transcription level of responsive factors.

View Article and Find Full Text PDF