has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control.
View Article and Find Full Text PDFThousands of years of historical practice have proven that the ancient Chinese food, vinegar-egg juice, has immune-boosting effects with the presence of many nutritional factors. However, its mechanism of action in the body remains unclear. In this research project, vinegar-egg juice was chosen to analyze its immune-enhancing effects on mice.
View Article and Find Full Text PDFMany cells in the body experience cyclic mechanical loading, which can impact cellular processes and morphology. In vitro studies often report that cells reorient in response to cyclic stretch of their substrate. To explore cellular mechanisms involved in this reorientation, a computational model was developed by adapting previous computational models of the actin-myosin-integrin motor-clutch system developed by others.
View Article and Find Full Text PDFThe biological processes necessary for the development and continued survival of any organism are often strongly influenced by the transport properties of various biologically active species. The transport phenomena involved vary over multiple temporal and spatial scales, from organism-level behaviors such as the search for food, to systemic processes such as the transport of oxygen from the lungs to distant organs, down to microscopic phenomena such as the stochastic movement of proteins in a cell. Each of these processes is influenced by many interrelated factors.
View Article and Find Full Text PDFThe regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth.
View Article and Find Full Text PDFAlthough significant progress has been made toward understanding morphogen-mediated patterning in development, control of the size and shape of tissues via local and global signaling is poorly understood. In particular, little is known about how cell-cell interactions are involved in the control of tissue size. The Hippo pathway in the Drosophila wing disc involves cell-cell interactions via cadherins, which lead to modulation of Yorkie, a cotranscriptional factor that affects control of the cell cycle and growth, and studies involving over- and underexpression of components of this pathway reveal conditions that lead to tissue over- or undergrowth.
View Article and Find Full Text PDFIn many cellular contexts, cargo is transported bidirectionally along microtubule bundles by dynein and kinesin-family motors. Upstream factors influence how individual cargoes are locally regulated, as well as how long-range transport is regulated at the whole-cell scale. Although the details of local, single-cargo bidirectional switching have been extensively studied, it remains to be elucidated how this results in cell-scale spatial organization.
View Article and Find Full Text PDF