Publications by authors named "JiSun Park"

The efficacy of photodynamic therapy (PDT) based on traditional photosensitizers is generally limited by the cellular redox homeostasis system due to the reactive oxygen species (ROS) scavenging effect of glutathione (GSH). In this study, buthionine sulfoximine (BSO), a GSH inhibitor, was conjugated with the amine group of chitosan oligosaccharide (COS) using a thioketal linker (COSthBSO) to liberate BSO and chlorine e6 (Ce6) under oxidative stress, and then, Ce6-COSthBSO NP (Ce6-COSthBSO NP), fabricated by a dialysis procedure, showed an accelerated release rate of BSO and Ce6 by the addition of hydrogen peroxide, indicating that nanophotosensitizers have ROS sensitivity. In the in vitro cell culture study using HCT116 colon carcinoma cells, a combination of BSO and Ce6 efficiently suppressed the intracellular GSH and increased ROS production compared to the sole treatment of Ce6.

View Article and Find Full Text PDF

Congenital hypothyroidism (CHT) is a diverse condition with various genetic etiologies. This study aimed to investigate the utility of next-generation sequencing (NGS) analysis in guiding treatment decisions and predicting prognosis for CHT patients with gland in situ (GIS). A retrospective analysis was conducted on 33 CHT patients with GIS who underwent NGS analysis at a single institution between 2018 and 2023.

View Article and Find Full Text PDF

Background: Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis.

Methods: We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing.

View Article and Find Full Text PDF

We previously developed a machine learning (ML)-assisted system for predicting the clinical activity score (CAS) in thyroid-associated orbitopathy (TAO) using digital facial images taken by a digital single-lens reflex camera in a studio setting. In this study, we aimed to apply this system to smartphones and detect active TAO (CAS ≥3) using facial images captured by smartphone cameras. We evaluated the performance of our system on various smartphone models and compared it with the performance of ophthalmologists with varying clinical experience.

View Article and Find Full Text PDF
Article Synopsis
  • * Out of 50 patients reviewed, 37 were enrolled, and we achieved a diagnostic yield of 40.5%, discovering 15 pathogenic variants across 13 different genes associated with short stature.
  • * Our findings suggest that NGS is beneficial for diagnosing genetic short stature but highlight the need for more research to create better patient selection methods and gene panels.
View Article and Find Full Text PDF

Numerous studies have been dedicated to genetically engineering crops to enhance their yield and quality. One of the key requirements for generating genetically modified plants is the reprogramming of cell fate. However, the efficiency of shoot regeneration during this process is highly dependent on genotypes, and the underlying molecular mechanisms remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Plant cells can change their function and regenerate into new plants through the combined effects of two hormones: auxin and cytokinin.
  • The study focuses on the role of a specific gene called WUSCHEL (WUS), which influences the ability of different potato genotypes to regenerate shoots.
  • Findings indicate that higher levels of WUS lead to better regeneration rates, and adjusting cytokinin types can enhance regeneration, particularly in genotypes with lower efficiency.
View Article and Find Full Text PDF
Article Synopsis
  • The text indicates a correction to a previously published article, specifically identified by its DOI: 10.3389/fpls.2022.997888.
  • The correction may involve updates or clarifications that improve the accuracy of the original research findings.
  • DOI stands for Digital Object Identifier, which is a unique identifier used for academic papers to locate and reference them easily.
View Article and Find Full Text PDF

Resistive random-access memory (RRAM) is essential for developing neuromorphic devices, and it is still a competitive candidate for future memory devices. In this paper, a unified model is proposed to describe the entire electrical characteristics of RRAM devices, which exhibit two different resistive switching phenomena. To enhance the performance of the model by reflecting the physical properties such as the length index of the undoped area during the switching operation, the Voltage ThrEshold Adaptive Memristor (VTEAM) model and the tungsten-based model are combined to represent two different resistive switching phenomena.

View Article and Find Full Text PDF

Epigallocatechin 3--gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model.

View Article and Find Full Text PDF

Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA).

View Article and Find Full Text PDF

Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions.

View Article and Find Full Text PDF

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation.

View Article and Find Full Text PDF
Article Synopsis
  • The Hayabusa2 spacecraft successfully returned to Earth from the asteroid 162173 Ryugu on December 6, 2020, and samples were recovered the next day.
  • The extracted gas from the sample container contained helium and neon and had unique extraterrestrial ratios, indicating some contamination from Earth’s atmosphere.
  • This mission marks the first successful return of gas species from a near-Earth asteroid, and discussions are held regarding the fragmentation of Ryugu grains in relation to the gas composition.
View Article and Find Full Text PDF
Article Synopsis
  • Potato cultivation faces threats from diseases, but genome editing technologies like CRISPR/Cas9 offer a solution for developing pathogen-resistant varieties.
  • Researchers established a CRISPR/Cas9 protocol to create potato mutants by targeting a susceptibility gene, achieving mutation efficiencies up to 34%.
  • While the resistant mutants showed enhanced salicylic acid levels and better disease resistance, they experienced significant growth inhibition, highlighting the need to balance disease resistance with healthy plant growth.
View Article and Find Full Text PDF

Hypothalamic hamartomas (HHs) are nonneoplastic mass lesions located in the hypothalamus that can cause central precocious puberty (CPP) and/or gelastic seizures. Seckel syndrome 5 (OMIM210600, SCKL5) is a rare autosomal recessive genetic spectrum disorder characterized by intrauterine growth retardation, proportionate osteodysplastic primordial dwarfism, a wide range of intellectual disability, "bird-headed" facial features, and microcephaly with various structural brain abnormalities. Two siblings presented with short stature and small head circumference and were diagnosed with SCKL 5.

View Article and Find Full Text PDF

Infantile cerebellar-retinal degeneration (ICRD) is an extremely rare, infantile-onset neuro-degenerative disease, characterized by autosomal recessive inherited, global developmental delay (GDD), progressive cerebellar and cortical atrophy, and retinal degeneration. In 2012, a biallelic pathogenic variant in gene (NM_001098.3) was found to be causative of this disease.

View Article and Find Full Text PDF

Tuberization is an important developmental process in potatoes, but it is highly affected by environmental conditions. Temperature is a major environmental factor affecting tuberization, with high temperatures suppressing tuber development. However, the temporal aspects of thermo-responsive tuberization remain elusive.

View Article and Find Full Text PDF

Although smoking status has potential as a biomarker for immune checkpoint blockade in advanced non-small cell lung cancer (NSCLC), its clinical significance remains obscure. This meta-analysis aims to assess the impact of the smoking status on the efficacy of first-line immunotherapy and to find better treatment in never-smoker and ever-smoker patients. We searched the MEDLINE, EMBASE, and Cochrane database for trials comparing immunotherapy with conventional chemotherapy as front-line treatment for advanced NSCLC.

View Article and Find Full Text PDF

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development.

View Article and Find Full Text PDF

Purpose: The symptoms and impairments caused by cerebral palsy usually require long-term treatment, resulting in a substantial burden on the family of affected children. This study explored the experiences of fathers with prematurely-born children with cerebral palsy, with a focus on how such experiences influenced their families.

Methods: A qualitative case study method was used.

View Article and Find Full Text PDF

Conjugate vaccine platform is a promising strategy to overcome the poor immunogenicity of bacterial polysaccharide antigens in infants and children. A carrier protein in conjugate vaccines works not only as an immune stimulator to polysaccharide, but also as an immunogen; with the latter generally not considered as a measured outcome in real world. Here, we probed the potential of a conjugate vaccine platform to induce enhanced immunogenicity of a truncated rotavirus spike protein ΔVP8*.

View Article and Find Full Text PDF

The dependency of device degradation on bending direction and channel length is analyzed in terms of bandgap states in amorphous indium-gallium-zinc-oxide (a-IGZO) films. The strain distribution in an a-IGZO film under perpendicular and parallel bending of a device with various channel lengths is investigated by conducting a three-dimensional mechanical simulation. Based on the obtained strain distribution, new device simulation structures are suggested in which the active layer is defined as consisting of multiple regions.

View Article and Find Full Text PDF