Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs.
View Article and Find Full Text PDFDisinfection by-products (DBPs) with heritage toxicity, mutagenicity and carcinogenicity are one kind of important new pollutants, and their detection and removal in water and wastewater has become a common challenge facing mankind. Advanced functional materials with ideal selectivity, adsorption capacity and regeneration capacity provide hope for the determination of DBPs with low concentration levels and inherent molecular structural similarity. Among them, molecularly imprinted polymers (MIPs) are favored, owing to their predictable structure, specific recognition and wide applicability.
View Article and Find Full Text PDFAmino acids are a class of compounds with wide-ranging applications. The synthesis of amino acids from biomass-derived α-keto acids and ammonia is a sustainable way but the unstable primary imine intermediates (R-C=NH) easily form oligomers. Herein, targeting this problem, alkaline modified mesoporous silica was employed as a support for ruthenium (Ru/M-MCM-41), which could be used as a bifunctional catalyst in the reductive amination of α-keto acids to synthesize α-amino acids.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2024
A simple and sensitive device for the detection of nitrite and nitrate in environmental waters was developed based on visible light gas-phase molecular absorption spectrometry. By integrating a detection cell (DC), semiconductor refrigeration temperature-controlling system (SRTCY), and nitrite reactor into a sequential injection analysis system, trace levels of nitrite and nitrate in complex matrices were successfully measured. A low energy-consuming light-emitting diode (violet, 400-405 nm) was coupled with a visible light-to-voltage converter (TSL257) to measure the gas-phase molecular absorption.
View Article and Find Full Text PDFPhenolic endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and disrupt normal cell functions upon entering a living organism, leading to reproductive and developmental toxicity. Therefore, the development of a rapid and efficient analytical method for detecting phenolic EDCs in environmental waters is crucial. Owing to the low concentration of phenolic EDCs in environmental water, appropriate sample pretreatment methods are necessary to remove interferences caused by the sample matrix and enrich the target analytes before instrumental analysis.
View Article and Find Full Text PDFBackground: (), an ornamental plant native to China, is known for its distinctive yellow blossoms. However, the mechanisms underlying flower coloration remain unclear.
Methods: We selected samples from different flowering stages and conducted rigorous physicochemical analyses.
Developing efficient and durable self-supporting catalytic electrodes is an important way for industrial applications of hydrogen evolution reaction. Currently, commercial nickel foam (NF)-based electrode has been widely used due to its good catalytic performance. However, the NF consisting of smooth skeleton surface and large pores not only exhibits poor conductivity but also provides insufficient space for catalyst decoration and sufficient adhesion, resulting in inadequate catalytic performance and poor durability of NF-based electrodes.
View Article and Find Full Text PDFThe increasing health risks posed by per- and polyfluoroalkyl substances (PFASs) in the environment highlight the importance of implementing effective removal techniques. Conventional wastewater treatment processes are inadequate for removing persistent organic pollutants. Recent studies have increasingly demonstrated that metal-organic frameworks (MOFs) are capable of removing PFASs from water through adsorption techniques.
View Article and Find Full Text PDFExploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes.
View Article and Find Full Text PDFA novel portable smartphone-assisted colorimetric method was reported for the determination of Hg with good analytical performance. A Zr(IV)-based metal-organic framework functionalized with amino groups (NH-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH-UiO-66), accelerating the oxidization of zymolyte 3,3',5,5'-tetramethylbenzidine (TMB).
View Article and Find Full Text PDFThe rational design of efficient nanozymes and the immobilization of enzymes are of great significance for the construction of high-performance biosensors based on nano-/bioenzyme catalytic systems. Herein, a novel V-TCPP(Fe) metal-organic framework nanozyme with a two-dimensional nanosheet morphology is rationally designed by using VCT MXene as a metal source and iron tetrakis(4-carboxyphenyl)porphine (FeTCPP) ligand as an organic linker. It exhibits enhanced peroxidase- and catalase-like activities and luminol-HO chemiluminescent (CL) behavior.
View Article and Find Full Text PDFThe identification of an increasing number of aryl organophosphate esters (aryl-OPEs) in environmental samples has led to growing attention recently. Due to the potential adverse effects on human health and environment, development of new analytical methods for sensitive and selective determination of aryl-OPEs in complex matrices is urgently needed. Here, a novel analytical method for the identification and determination of trace amounts of aryl-OPEs in water samples is developed by using melamine sponge@heteropore covalent organic framework (MS@HCOF) based on vortex-assisted extraction (VAE) prior to UHPLC-MS/MS analysis.
View Article and Find Full Text PDFLithium-sulfur batteries are anticipated to be the next generation of energy storage devices because of their high theoretical specific capacity. However, the polysulfide shuttle effect of lithium-sulfur batteries restricts their commercial application. The fundamental reason for this is the sluggish reaction kinetics between polysulfide and lithium sulfide, which causes soluble polysulfide to dissolve into the electrolyte, leading to a shuttle effect and a difficult conversion reaction.
View Article and Find Full Text PDFBenzotriazole ultraviolet stabilizers (BUVSs) that are added to pharmaceutical and personal care products (PPCPs) have raised global concerns because of their high toxicity. An efficient method to monitor its pollution level is urgently imperative. Here, a nitrogen-doped metal-organic framework (MOF) derived porous carbon (UiO-66-NH/DC) was prepared and integrated into polyvinylidene fluoride mixed matrix membrane (PVDF MMM) as an adsorbent for the first time.
View Article and Find Full Text PDFA high-performance liquid chromatography-ultraviolet method was developed for rapidly and simultaneously analyzing novel and typical bisphenols in building materials, including bisphenol S, diphenolic acid, bisphenol F, bisphenol E, bisphenol A, bisphenol B, bisphenol AF, bisphenol AP, bisphenol C, bisphenol FL, bisphenol Z, bisphenol BP, bisphenol M, and bisphenol P. By using a Kromasil 100-5 C18 column, these bisphenols were completely separated in 40 min via gradually increasing the concentration of methanol in the mobile phase from 45 to 80% during the elution process. In particular, this method achieved the synchronous analysis of bisphenol S, diphenolic acid, bisphenol FL, bisphenol BP, and bisphenol M through HPLC, which were difficult to separate and had to be identified and detected through mass spectrometry.
View Article and Find Full Text PDFMetformin (MET) is the primary medicine for type II diabetes, which produces carcinogenic byproducts during chlorine disinfection, so the detection of MET in aqueous environment is crucial. In this work, an electrochemical sensor based on nitrogen-doped carbon nanotubes (NCNT) has been constructed for ultrasensitive determination of MET in the presence of Cu(II) ions. The excellent conductivity and rich π-conjugated structure of NCNT facilitate the electron transfer rate of fabricated sensor and benefit the adsorption of cation ions.
View Article and Find Full Text PDFHexabromocyclododecanes (HBCDs) have given their adverse effects on environment and human health, and highly sensitive analysis of HBCDs in water is urgent. In this study, a new method for the determination of trace HBCDs in water was established by covalent organic framework (COF) based nylon membrane extraction (ME) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The COF had been self-assembled onto the nylon membrane in a gentle strategy to fabricate COF nylon membrane.
View Article and Find Full Text PDFMetal organic framework based mixed matrix membranes (MOF-MMMs) were synthesized and applied for dispersive membrane extraction (DME) of four neonicotinoid insecticides (nitenpyram, thiacloprid, imidacloprid, and acetamiprid) in environmental water, combined with high performance liquid chromatography (HPLC) for determination. Several experimental conditions were optimized in detail, involving dosage percentage of MOF, extraction time, sample pH, salinity, type and volume of eluent, and elution time. High sensitivity with limits of detection and quantification were achieved as 0.
View Article and Find Full Text PDFFungicides can lead to soil and plant diseases after long-term enrichment in the environment; they can also penetrate deeper into the soil and groundwater by rainwater or irrigation, threatening the water environment and human health. Therefore, it is crucial to develop a simple, rapid, efficient, and sensitive analytical method for the detection of fungicides in the water environment. Sample pretreatment is important for the extraction and enrichment of pollutants from environmental water.
View Article and Find Full Text PDFNovel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent.
View Article and Find Full Text PDFHexabromocyclododecanes (HBCDs) are a group of brominated flame retardants that are extensively employed in the industrial production of plastics, furniture, and construction materials. Due to their regular use and massive emissions, HBCDs have been distributed in the environment (air, water, soil, and sediments). Due to their high toxicity, persistent and long-distance transport, and bioaccumulation, HBCDs were listed in the Stockholm Convention in 2013.
View Article and Find Full Text PDFDetection of heavy metal ions has drawn significant attention in environmental and food area due to their threats to the human health and ecosystem. Colorimetry is one of the most frequently-used methods for the detection of heavy metal ions owing to its simplicity, easy operation and rapid on-site detection. The development of chromogenic materials and their sensing mechanisms are the key research direction in the area of colorimetric method.
View Article and Find Full Text PDF