Publications by authors named "JiHeung Kim"

Tendon consists of soft collagen, yet it is mechanically strong and firmly adhered to the bone owing to its hierarchically anisotropic structure and unique tendon-to-bone integration (enthesis), respectively. Despite the recent advances in biomaterials, hydrogels simultaneously providing tendon-like high mechanical properties and strong adhesion to bone-mimicking enthesis is still challenging. Here, a strong, stiff, and adhesive triple-network (TN) anisotropic hydrogel that mimics a bone-adhering tendon is shown.

View Article and Find Full Text PDF

Intravaginal delivery of siRNA for prevention of sexually transmitted infections faces obstacles such as the acidic environment and vaginal mucus barrier. To achieve effective protection and delivery of siRNA, we developed a polysuccinimide (PSI)-based nanocarrier (PSI-PEG-API-PMA, PPAP) by conjugating methoxy polyethylene glycol amine (Me-PEG-NH, Mw 5000), 1-(3-aminopropyl)imidazole (API), and 1-pyrenemethylamine hydrochloride (PMA) to PSI. PPAP demonstrated a spherical self-assembled nanostructure before and after encapsulation of a model siRNA.

View Article and Find Full Text PDF

Poly(lactide) (PLA) has received tremendous attention recently from researchers and industrialists due to its ability to solve environmental problems related to plastic pollution. However, PLA's brittleness, poor thermal stability, low elongation at break, and poor melt processing prevent its use in a broader spectrum of applications. Herein, we produced a very tough and thermally more stable PLA stereocomplex by simply mixing PLA with organoalkoxysilane.

View Article and Find Full Text PDF

In this study, polyaspartamide-based hydrogels were synthesized by boron-catechol coordination followed by incorporation of AgNPs into the materials. Free catechol moieties were exploited to produce AgNPs. TEM analyses displayed AgNPs of less than 20 nm in diameter and with minimum aggregation, attesting the role of hydrogels to act as an efficient template for the production of dispersed particles.

View Article and Find Full Text PDF

When multiple intermolecular interactions occur simultaneously, complexed molecules undergo gelation by inter-cohesive bonding, inducing a pseudo-crosslinking effect to form a supramolecular gel. Among the number of substances that can induce supramolecular assembly, phenolic species such as 3,4-dihydroxy-l-phenylalanine (DOPA) are widely utilized for synthesizing adhesive materials. However, despite the strong adhesion capability of monomeric phenol, it lacks cohesive strength and rarely forms a supramolecular gel to secure its mechanical properties.

View Article and Find Full Text PDF

New amphiphilic PEGylated poly(aspartic acid) graft copolymer (PASP-PEG-Ph) was synthesized as a nanocarrier for intravaginal drug delivery of poorly water-soluble drugs. PASP-PEG-Ph self-assembled into negatively charged spherically shaped nanoparticles in the presence of pH 4.5 and pH 7.

View Article and Find Full Text PDF

Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)-containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.

View Article and Find Full Text PDF

This study investigates a spin-coating method for modifying the surface properties of a poly(ethylene-alt-maleic anhydride) (PEMA) gate insulator. The 60 nm-thick PEMA thin film exhibits excellent electrical insulating properties, and its surface properties could be easily modified by surface grafting of octylamine. Due to surface treatment via spin-coating, the surface energy of the PEMA gate insulator decreased, the crystal quality of the organic semiconductor improved, and consequently the performance of low-voltage organic thin-film transistors (TFTs) was enhanced.

View Article and Find Full Text PDF

We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as 0.

View Article and Find Full Text PDF

In the present paper we report for the first time the development of redox-responsive biocompatible polymer gels. Double cross-linked poly(aspartic acid) hydrogels were prepared using two different cross-linking agents simultaneously. One of the cross-linkers was diaminobutane (DAB), the other cystamine (CYS).

View Article and Find Full Text PDF

Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column.

View Article and Find Full Text PDF

A biodegradable, pH-sensitive amphiphilic co-polymer, o-(2-aminoethyl)-o'-methylpolyethylene glycol/1-(3-aminopropyl)imidazole/lactic acid oligomers-g-polyaspartamide (MPEG/API/LAs-g-PASPAM), was synthesized. The hydrophobic biodegradable poly (lactic acid) (PLA), the hydrophilic MPEG and the pH-sensitive API were successfully introduced into the biodegradable polysuccinimide (PSI) backbone by grafting. In its synthesis, the feed ratio of MPE to PLA was varied to provide different amphiphilic balances.

View Article and Find Full Text PDF

pH sensitive nano-gels based on polyaspartamide graft copolymers are prepared by UV crosslinking the self-assembled nano-aggregates in the presence of a series of hydrophobic and hydrophilic grafting segments. While the physical nano-aggregates dissociate via ionization of the pH sensitive moiety, the nano-gels synthesized in this study swell instead. The chemical structure and morphology of the resulting nano-gels were analyzed using FTIR, (1)H FTNMR, and TEM.

View Article and Find Full Text PDF

Production of extracellular epothilone B, one of the potent anticancer agents, by free and immobilized Sorangium cellulosum was studied using the repeated batch culture process. The concentration of alginate used in immobilization was directly related to the mass transfer rate of nutrients, mechanical stability, and the epothilone B production yield. With the optimized 3% (w/v) calcium alginate carrier, a prolonged repeated batch culture was investigated for the 5 repeated batches for 24 days.

View Article and Find Full Text PDF