The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse.
View Article and Find Full Text PDFThe temperature sensitivity of soil carbon mineralization () is an important index to evaluate the responses of ecosystem carbon cycling to climate change. We examined the effects of three electron acceptors [SO, NO and Fe(Ⅲ)] addition on the value of anaerobic carbon mineralization of community soil (0-10 cm) in the Yellow River Estuary wetland with the closed culture-gas chromatography method. The results showed that the three electron acceptors addition inhibited the production of CO and CH during the 48-day culture period, with a decrease of 17.
View Article and Find Full Text PDFCarbon (C), nitrogen (N), and phosphorus (P) are important nutrients, and their ecological stoichiometric characteristics can reflect the quality and fertility capacity of soil, which is critical to understanding the stable mechanisms of estuarine wetland ecosystems. Under global changes, the increase in salinity and flooding caused by sea level rise will lead to changes in biogeochemical processes in estuarine wetlands, which is expected to affect the ecological stoichiometric characteristics of soil C, N, and P and ultimately interfere with the stability of wetland ecosystems. However, it remains unclear how the C, N, and P ecological stoichiometric characteristics respond to the water-salt environment in estuarine wetlands.
View Article and Find Full Text PDFTo clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., wetland, wetland, wetland, and wetland, as well as spp.
View Article and Find Full Text PDFWith intact soil core and by using acetylene inhibition method, this paper measured the N2O emission and denitrification rates of typical Calamagrostis angustifolia wetland soils in Sanjiang Plain, analyzed their relationships with environmental factors, and estimated the total amounts of N2O emission and denitrification loss. The results showed that meadow marsh soil and humus marsh soil had a similar change range of N2O emission rate (0.020-0.
View Article and Find Full Text PDFUsing the static chamber and chromatogram method, H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia in Sanjiang Plain were measured during growth season(5-9 month), the results showed that the seasonal and diurnal variations of H2S and COS emission fluxes were obvious, the mean H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia were 0.34 microg x (m2 x h)(-1) and - 0.29 microg x (m2 x h)(-1) respectively, the Calamagrostis angustifolia wetlands were the sources for H2S and the sinks for COS during the growth time.
View Article and Find Full Text PDF