Publications by authors named "Ji-Tong Yu"

Microvesicles (MVs) derived from human umbilical cord mesenchymal stem cells (hUC-MSCs-MVs) and miR-21 were demonstrated to ameliorate renal ischemia-reperfusion injury (IRI). Since hUC-MSC-MVs contained a substantial quantity of miR-21, we speculated that miR-21 might account for a part of the therapeutic effects of hUC-MSCs-MVs. The human tubule epithelial (HK-2) cells were cultured under low oxygen (LO) condition to mimic a cellular IRI model.

View Article and Find Full Text PDF

Objectives: Microvesicles (MVs) derived from human Wharton's jelly mesenchymal stem cells (MSC-MVs) were demonstrated to ameliorate acute lung injury (ALI). We have previously found that MSC-MV-transferred hepatocyte growth factor was partly involved in their therapeutic effects. Since MSC-MVs also contained a substantial quantity of miR-100, which plays an important role in lung cancer and injury, we speculated that miR-100 might similarly account for a part of the therapeutic effects of MSC-MVs.

View Article and Find Full Text PDF
Article Synopsis
  • Hemangiopericytoma (HPC) is a rare type of soft tissue tumor that seldom affects the urogenital system, and this report details the first case of lipomatous HPC found in a 37-year-old man.
  • The tumor appeared as a rapidly growing mass, exhibiting unique features on CT imaging and showing low mitotic activity under microscopic examination, along with specific immunohistochemical markers.
  • After adequate surgical removal, the patient showed no signs of local recurrence or distant metastases during an 18-month follow-up, highlighting the need for long-term monitoring due to the tumor’s unpredictable behavior.
View Article and Find Full Text PDF

In medical applications of low power laser irradiations, safety is one of the most concerning problems since the light focused by the biological object itself may cause damage of living organisms. The light distributions in an erythrocyte with the shape of native biconcave, oblate spheroid, or disk sphere under the irradiation of a plane light of 632.8 nm were studied with a numerical calculation method of finite-difference time domain.

View Article and Find Full Text PDF

Although laser irradiation has been reported to promote skin wound healing, the mechanism is still unclear. As mast cells are found to accumulate at the site of skin wounds we hypothesized that mast cells might be involved in the biological effects of laser irradiation. In this work the mast cells, RBL-2H3, were used in vitro to investigate the effects of laser irradiation on cellular responses.

View Article and Find Full Text PDF

The surface stress on the real shape (biconcave disklike) of an erythrocyte under laser irradiation is theoretically studied according to the finite-difference time-domain (FDTD) method. The distribution of the surface stresses depends on the orientation of erythrocytes in the laser beam. Typically when the erythrocyte was irradiated from the side direction (the laser beam was perpendicular to the normal of the erythrocyte plane), the surface stresses were so asymmetrical and nonuniform that the magnitude of the surface stress on the back surface was three times higher than that on the front surface, and the highest-to-lowest ratio of the stress reached 16 times.

View Article and Find Full Text PDF