Publications by authors named "Ji-Tao Huang"

A series of novel substituted uracil-1'(N)-acetic acid esters (6-20) of camptothecins (CPTs) were synthesized by the acylation method. These new compounds were evaluated for in vitro antitumor activity against tumor cell lines, A549, Bel7402, BGC-823, HCT-8 and A2780. In vitro results showed that most of the derivatives exhibited comparable or superior cytotoxicity compare to CPT (1) and topotecan (TPT, 2), with 12 and 13 possessing the best efficacy.

View Article and Find Full Text PDF

Prediction of protein-folding rates follows different rules in two-state and multi-state kinetics. The prerequisite for the prediction is to recognize the folding kinetic pathway of proteins. Here, we use the logistic regression and support vector machine to discriminate between two-state and multi-state folding proteins.

View Article and Find Full Text PDF

Folding kinetics of proteins is governed by the free energy and position of transition states. But attempts to predict the position of folding transition state on reaction pathway from protein structure have been met with only limited success, unlike the folding-rate prediction. Here, we find that the folding transition-state position is related to the secondary structure content of native two-state proteins.

View Article and Find Full Text PDF

We present a simple method for determining the folding rates of two- and three-state proteins from the number of residues in their secondary structures (secondary structure length). The method is based on the hypothesis that two- and three-state foldings share a common pattern. Three-state proteins first condense into metastable intermediates, subsequent forming of alpha-helices, turns, and beta-sheets at slow rate-limiting step.

View Article and Find Full Text PDF

The significant correlation between protein folding rates and the sequence-predicted secondary structure suggests that folding rates are largely determined by the amino acid sequence. Here, we present a method for predicting the folding rates of proteins from sequences using the intrinsic properties of amino acids, which does not require any information on secondary structure prediction and structural topology. The contribution of residue to the folding rate is expressed by the residue's Omega value.

View Article and Find Full Text PDF

At present, accuracies of secondary structural prediction scarcely go beyond 70-75%. Secondary structural comparison is carried out among sequence-identified proteins. The results show natural wobble between different secondary structural types is possible in homologous families, and the best prediction accuracy will rarely be 100%.

View Article and Find Full Text PDF