Publications by authors named "Ji-Liang Tan"

Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptive response to a variety of stimuli, but prolonged hypertrophy leads to heart failure. Hence, discovery of agents treating cardiac hypertrophy is urgently needed. In the present study, we investigated the effects of QF84139, a newly synthesized pyrazine derivative, on cardiac hypertrophy and the underlying mechanisms.

View Article and Find Full Text PDF

Enhanced reactive oxygen species (ROS) at the beginning of reperfusion activated signal transducer and activator of transcription 3 (STAT3) in intermittent hypobaric hypoxia (IHH)-afforded cardioprotection against ischemia/reperfusion (I/R). However, its mechanism remains largely unknown. This study aimed to investigate the role and the downstream of STAT3 in exogenous enhanced post-ischemic ROS-induced cardioprotection using the model of moderate hydrogen peroxide postconditioning (HOPoC) mimicking endogenous ROS in IHH.

View Article and Find Full Text PDF

Moderate enhanced reactive oxygen species (ROS) during early reperfusion trigger the cardioprotection against ischemia/reperfusion (I/R) injury, while the mechanism is largely unknown. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) contributes to the cardioprotection but whether it is activated by ROS and how it regulates Ca(2+) homeostasis remain unclear. Here we investigated whether the ROS generated during early reperfusion protect the heart/cardiomyocyte against I/R-induced Ca(2+) overload and contractile dysfunction via the activation of JAK2/STAT3 signaling pathway by using a cardioprotective model of intermittent hypobaric hypoxia (IHH) preconditioning.

View Article and Find Full Text PDF

Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined.

View Article and Find Full Text PDF