Sonothrombolysis is a technique that employs the ultrasound waves to break down the clot. Recent studies have demonstrated significant improvement in the treatment efficacy when combining two ultrasound waves of different frequencies. Nevertheless, the findings remain conflicted on the ideal frequency pairing that leads to an optimal treatment outcome.
View Article and Find Full Text PDFThe impacts of partially-covered fractal grids induced turbulence on the forced convective heat transfer across plate-fin heat sink at Reynolds number Re = 22.0 × 10 were numerically and experimentally investigated. Results showed that partially covered grids rendered a higher thermal dissipation performance, with partially-covered square fractal grid (PCSFG) registering an outstanding increase of 43% in Nusselt number relative to the no grid configuration.
View Article and Find Full Text PDFA 3D stationary particle tracking velocimetry (SPTV) with a unique recursive corrective algorithm has been successfully established to detect the instantaneous regional fluid flow characteristics. The veracity of SPTV is corroborated by conducting actual displacement measurement validation, which gives a maximum percentage deviation of about 0.8%.
View Article and Find Full Text PDFThe centerline streamwise and cross-sectional (x/D = 0.425) turbulence characteristics of a 2D planar space-filling square-fractal-grid (SFG) composed of self-similar patterns superimposed at multiple length-scales is experimentally unveiled via piezoelectric thin-film flapping velocimetry (PTFV). The fluid-structure-interaction between a flexible piezoelectric thin-film and SFG-generated turbulent flow at Re = 4.
View Article and Find Full Text PDFA net immersed in fractal-induced turbulence exhibit a transient time-varying deformation. The anisotropic, inhomogeneous square fractal grid (SFG) generated flow interacts with the flexible net to manifest as visible cross-sectional undulations. We hypothesize that the net's response may provide a surrogate in expressing local turbulent strength.
View Article and Find Full Text PDFBioengineering (Basel)
August 2017
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell-matrix and cell-cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials.
View Article and Find Full Text PDFThe flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation.
View Article and Find Full Text PDFCell membrane deformation induced by external mechanical stimuli has been studied extensively over the past three decades. The present study focuses on the coupling of in-plane shear H and out-of-plane bending B of liposome membrane and its influences on the deformation of a single vesicle subjected to (i) external compressive load via two parallel platens and (ii) contact forces caused by a rigid substrate. Our results show that the increase of membrane resultant stress in both loading configurations causes the liposome to become more rigid and the degree of vesicle deformation decreases when the in-plane shearing effect is dominant.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
June 2004
A new biophysical approach based on optical tweezers is developed to measure the time-dependent shape transformation and recovery of a single liposome, which is induced by the sudden stop of a moving liposome from various flow velocities at constant temperature. A simple viscoelastic model has been applied to correlate the temporal geometric parameter of the deformed liposome with a characteristic time constant, i.e.
View Article and Find Full Text PDFThe role of osmotic pressure on the geometry of adherent liposome remains an intricate question in the mechanics of supramolecular structures. In this study, confocal reflection interference contrast microscopy in combination with cross-polarized microscopy was applied to probe the geometry of deformed liposome on fused silica substrates through the determination of a vesicle-substrate separation profile. In parallel, a theoretical model which describes the large deformation of the lipid bilayer membrane under both out-plane bending and in-plane shear forces is developed.
View Article and Find Full Text PDFThe viscous drag and mechanical deformation of a single vesicle under hydrodynamics flow during the phase transition of a lipid bilayer is determined by optical tweezers experiments with the aid of computational fluid dynamics simulations. Based on the experimental geometry of the vesicle under hydrodynamics flow, the surface stresses and drag force are numerically calculated. It is found that the vesicle is less rigid and the viscous drag force of the vesicle decreases with the increase of temperature at low Reynolds number flow during sample heating.
View Article and Find Full Text PDF