Publications by authors named "Ji-Hyun Ryu"

Despite the increasing prevalence of both spinal stenosis and obesity, their association remains controversial. This study aimed to investigate the relationship between body mass index (BMI) and the risk of lumbar spinal stenosis in the Korean population using nationwide data. We analyzed data from 2,161,684 adults aged ≥40 years who underwent health examinations in 2009 using the Korean National Health Insurance System database.

View Article and Find Full Text PDF

Objectives: Oral biofilms, including pathogens such as Porphyromonas gingivalis, are involved in the initiation and progression of various periodontal diseases. However, the treatment of these diseases is hindered by the limited efficacy of many antimicrobial materials in removing biofilms under the harsh conditions of the oral cavity. Our objective is to develop a gel-type antimicrobial agent with optimal physicochemical properties, strong tissue adhesion, prolonged antimicrobial activity, and biocompatibility to serve as an adjunctive treatment for periodontal diseases.

View Article and Find Full Text PDF

Recently, interest in polyphenol-containing composite adhesives for various biomedical applications has been growing. Tannic acid (TA) is a polyphenolic compound with advantageous properties, including antioxidant and antimicrobial properties. Additionally, TA contains multiple hydroxyl groups that exhibit biological activity by forming hydrogen bonds with proteins and biomacromolecules.

View Article and Find Full Text PDF

Introduction: Cartilage regeneration is a challenging issue due to poor regenerative properties of tissues. Electrospun nanofibers hold enormous potentials for treatments of cartilage defects. However, nanofibrous materials used for the treatment of cartilage defects often require physical and/or chemical modifications to promote the adhesion, proliferation, and differentiation of cells.

View Article and Find Full Text PDF

In an effort to reduce the flammability of synthetic polymeric materials such as cotton fabrics and polyurethane foam (PUF), hybrid nanocoatings are prepared by layer-by-layer assembly. Multilayered nanocomposites of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), are paired with two kinds of clay nanoplatelets, montmorillonite (MMT) and vermiculite (VMT). The physical properties such as thickness and mass and thermal behaviors in clay-based nanocoatings with and without incorporation of tris buffer are compared to assess the effectiveness of amine salts on flame retardant (FR) performances.

View Article and Find Full Text PDF

Since the discovery of polyphenolic underwater adhesion in marine mussels, researchers strive to emulate this natural phenomenon in the development of adhesive hemostatic materials. In this study, bio-inspired hemostatic materials that lead to pseudo-active blood coagulation, utilizing traditionally passive polymer matrices of chitosan and gelatin are developed. The two-layer configuration, consisting of a thin, blood-clotting catechol-conjugated chitosan (CHI-C) layer and a thick, barrier-functioning gelatin (Geln) ad-layer, maximizes hemostatic capability and usability.

View Article and Find Full Text PDF

The occurrence of leakage from anastomotic sites is a significant issue given its potential undesirable complications. The management of anastomotic leakage after gastrointestinal surgery is particularly crucial because it is directly associated with mortality and morbidity in patients. If adhesive materials could be used to support suturing in surgical procedures, many complications caused by leakage from the anastomosis sites could be prevented.

View Article and Find Full Text PDF

Deploying Ni-enriched (Ni≥95 %) layered cathodes for high energy-density lithium-ion batteries (LIBs) requires resolving a series of technical challenges. Among them, the structural weaknesses of the cathode, vigorous reactivity of the labile Ni ion species, gas evolution and associated cell swelling, and thermal instability issues are critical obstacles that must be solved. Herein, we propose an intuitive strategy that can effectively ameliorate the degradation of an extremely high-Ni-layered cathode, the construction of ultrafine-scale microstructure and subsequent intergranular shielding of grains.

View Article and Find Full Text PDF

One of the hallmarks of osteoarthritis (OA), the most common degenerative joint disease, is increased numbers of senescent chondrocytes. Targeting senescent chondrocytes or signaling mechanisms leading to senescence could be a promising new therapeutic approach for OA treatment. However, understanding the key targets and links between chondrocyte senescence and OA remains unclear.

View Article and Find Full Text PDF

Preventing anastomotic leakage (AL) and postoperative adhesions after gastrointestinal surgery is crucial for ensuring a favorable surgical prognosis. However, AL prevention using tissue adhesives can unintentionally lead to undesirable adhesion formation, while anti-adhesive agents may interfere with wound healing and contribute to AL. In this study, we have developed a double-layer patch, consisting of an adhesive layer on one side, utilizing gallic acid-conjugated chitosan (CHI-G), and an anti-adhesive layer on the opposite side, employing crosslinked hyaluronic acid (cHA).

View Article and Find Full Text PDF

Biomaterial-based drug delivery systems have been developed to expedite cartilage regeneration; however, challenges related to drug recovery, validation, and efficient drug delivery remain. For instance, compound K (CK) is a major metabolite of ginsenosides that is known to protect against joint degeneration by inhibiting the production of inflammatory cytokines and the activation of immune cells. However, its effects on cartilage degradation and tissue regeneration remain unclear.

View Article and Find Full Text PDF

Background: Fluoride treatment is one of the most effective dental caries prevention methods. To continuously prevent dental caries, stably immobilizing the fluoride on the tooth enamel is highly desirable. This study aimed to evaluate the remineralization of tooth enamels by one-pot coating using polydopamine and fluoride ions.

View Article and Find Full Text PDF

Background: An abdominal pseudohernia is a rare clinical entity that consists of an abnormal bulging of the abdominal wall that can resemble a true hernia but does not have an associated underlying fascial or muscle defect. Abdominal pseudohernia is believed to result from denervation of the abdominal muscles in cases of herpes zoster infection, diabetes mellitus, lower thoracic or upper lumbar disc herniation, surgical injuries, and rib fracture. To date, nine cases of abdominal pseudohernia caused by disc herniation at the lower thoracic or upper lumbar levels have been reported.

View Article and Find Full Text PDF

Background: Iliac artery occlusion accompanied by spinal canal stenosis is rare. All reported cases were treated with endovascular stenting for iliac artery occlusion. We report the first case of external iliac artery occlusion accompanied by spinal stenosis, which was successfully treated with conservative treatment.

View Article and Find Full Text PDF

(1) Background: Lumbar spinal stenosis (LSS) causes uncomfortable neuropathic symptoms, which can negatively affect osteoporosis. The aim of this study was to investigate the effect of LSS on bone mineral density (BMD) in patients treated with one of three oral bisphosphonates (ibandronate, alendronate and risedronate) for initially diagnosed osteoporosis. (2) Methods: We included 346 patients treated with oral bisphosphonates for three years.

View Article and Find Full Text PDF

Endoscopic tattooing with India ink is a popular method for identifying colonic lesions during minimally invasive surgery because it is highly challenging to localize lesions during laparoscopy. However, there is a perceived unmet need for the injection of India ink and carbon particle suspension due to various complications and inconstant durability during the perioperative period. In this study, carbon black-containing self-healing adhesive alginate/polyvinyl alcohol composite hydrogels were synthesized as endoscopic tattooing inks.

View Article and Find Full Text PDF

Rationale: The incidence of snapping popliteus tendon syndrome, a type of lateral knee snapping, is not high, so making an accurate diagnosis is difficult. A proper treatment following an accurate diagnosis is essential for improvement. Very few cases have been reported of its treatment.

View Article and Find Full Text PDF

Background: To explore how self-disclosure leads to post-traumatic growth (PTG) in adults who have experienced traumatic events, this study identified the relationship between self-disclosure and post-traumatic growth in Korean adults. We examined a parallel multiple mediating model for this relationship.

Methods: Participants were 318 Korean male and female adult participants aged 20 years or older who had experienced trauma.

View Article and Find Full Text PDF

Encapsulation of therapeutic cells in a semipermeable device can mitigate the need for systemic immune suppression following cell transplantation by providing local immunoprotection while being permeable to nutrients, oxygen, and different cell-secreted biomolecules. However, fibrotic tissue deposition around the device has been shown to compromise the long-term function of the transplanted cells. Herein, a macroencapsulation device design that improves long-term survival and function of the transplanted cells is reported.

View Article and Find Full Text PDF

Here, in Ppara mice, we found that an increased DNL stimulated the cartilage degradation and identified ACOT12 as a key regulatory factor. Suppressed level of ACOT12 was observed in cartilages of OA patient and OA-induced animal. To determine the role and association of ACOT12 in the OA pathogenesis, we generated Acot12 knockout (KO) (Acot12) mice using RNA-guided endonuclease.

View Article and Find Full Text PDF

Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied.

View Article and Find Full Text PDF

Background: Gas forming infection of the spine is a consequence of vertebral osteomyelitis, necrotizing fasciitis, or a gas-forming epidural abscess, which is very rare and fatal conditions. This is the rare case of necrotizing fasciitis that rapidly progressed from the lumbar area to upper thoracic area.

Case Presentation: A 58-year-old male complained of lower back pain with fever and chills.

View Article and Find Full Text PDF

Purpose: Various surgical methods have been reported for Kummell's disease with neurologic deficits. The aim of this study was to introduce long-segmental posterior fusion (LPF) combined with vertebroplasty (VP) and wiring as an alternative surgical technique.

Material And Methods: We retrospectively analyzed 10 patients undergoing posterior decompression and LPF combined with VP and wiring for Kummell's disease with neurologic deficits from January 2011 to December 2014.

View Article and Find Full Text PDF

Embryonic salivary gland mesenchyme (eSGM) secretes various growth factors (bioactives) that support the proper growth and differentiation of salivary gland epithelium. Therefore, eSGM cells can be used as feeder cells for in vitro-cultured artificial salivary gland if their survival and bioactivity are properly maintained. As eSGM is encapsulated in a hyaluronan (HA)-rich developmental milieu, we hypothesized that mimicking this environment in vitro via surface immobilization of HA might enhance survival and bioactivity of eSGM.

View Article and Find Full Text PDF

Catechol-containing hydrogels have been exploited in biomedical fields due to their adhesive and cohesive properties, hemostatic abilities, and biocompatibility. Catechol moieties can be oxidized to -catecholquinone, a chemically active intermediate, in the presence of oxygen to act as an electrophile to form catechol-catechol or catechol-amine/thiol adducts. To date, catechol cross-linking chemistry to fabricate hydrogels has been mostly performed at room temperature.

View Article and Find Full Text PDF