Publications by authors named "Ji-Hyun Jang"

(1) Background: This study aimed to enhance the biological properties of hydraulic calcium silicate cements (HCSCs) by incorporating organic and inorganic components, specifically elastin-like polypeptides (ELPs) and bioactive glass (BAG). We focused on the effects of these composites on the viability, migration, and osteogenic differentiation of human periodontal ligament fibroblasts (hPDLFs). (2) Methods: Proroot MTA was supplemented with 1-5 wt% 63S BAG and 10 wt% ELP.

View Article and Find Full Text PDF

This split-mouth blinded randomized controlled study compared the efficacy of a desensitizing agent with oxalate/resin polymer and a universal adhesive containing mesoporous bioactive glass (MBG) for dentin hypersensitivity (DH) relief, using Schiff sensitivity score (SSS) and visual analog scale (VAS). Split quadrants containing teeth with DH were treated with either MS Coat ONE or Hi-Bond Universal with MBG as the functional additive. Assessments at baseline, immediately post-application, and at 1- and 2-week follow-ups used standardized stimulus protocols (air, cold, and acid).

View Article and Find Full Text PDF

Chronic osteomyelitis with proliferative periostitis, known as Garre's osteomyelitis, is a type of osteomyelitis characterized by a distinctive gross thickening of the periosteum of bones. Peripheral reactive bone formation can be caused by mild irritation or infection. Garre's osteomyelitis is usually diagnosed in children and young adults, and the mandible is more affected than the maxilla.

View Article and Find Full Text PDF

The study presents the binder-free synthesis of mixed metallic organic frameworks (MMOFs) supported on a ternary metal oxide (TMO) core as an innovative three-dimensional (3D) approach to enhance electron transport and mass transfer during the electrochemical charge-discharge process, resulting in high-performance hybrid supercapacitors. The research demonstrates that the choice of organic linkers can be used to tailor the morphology of these MMOFs, thus optimizing their electrochemical efficiency. Specifically, a NiCo-MOF@NiCoO@Ni electrode, based on terephthalic linkers, exhibits highly ordered porosity and a vast internal surface area, achieving a maximum specific capacity of 2320 mC cm, while maintaining excellent rate capability and cycle stability.

View Article and Find Full Text PDF

We aimed to evaluate the screw-in force, torque generation, and performance of three nickel-titanium (NiTi) glide-path files with different rotational kinetics. ProTaper Ultimate Slider (PULS) and HyFlex EDM Glide-path (HEDG) files were used for canal shaping with constant rotation (CON) or the alternative rotation technique (ART). In the ART mode, the NiTi file was periodically rotated at a speed of 1.

View Article and Find Full Text PDF

Introduction: Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism.

View Article and Find Full Text PDF

Objective: Surgical margin status in women undergoing surgery for early-stage cervical cancer is an important prognostic factor. We sought to determine whether close (<3 mm) and positive surgical margins are associated with surgical approach and survival.

Methods: This is a national retrospective cohort study of cervical cancer patients treated with radical hysterectomy.

View Article and Find Full Text PDF

Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process.

View Article and Find Full Text PDF

The 4-week double-blind clinical trial to manage dentin hypersensitivity (DH) using different desensitizing toothpastes was conducted. 53 participants with DH were enrolled in this trial. The participants were randomized into 3 groups: Group N; no active ingredient-containing toothpaste (Pleasia fluoride-free), Group SC; a toothpaste containing strontium chloride (Sensodyne Original), and Group TP; a toothpaste containing tricalcium phosphate (Vussen S).

View Article and Find Full Text PDF

Minimally invasive surgery for the treatment of macroscopic cervical cancer leads to worse oncologic outcomes than with open surgery. Preoperative conization may mitigate the risk of surgical approach. Our objective was to describe the oncologic outcomes in cases of cervical cancer initially treated with conization, and subsequently found to have no residual cervical cancer after hysterectomy performed via open and minimally invasive approaches.

View Article and Find Full Text PDF

The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC.

View Article and Find Full Text PDF

Background: Recently, various kinds of heat-treated nickel-titanium (NiTi) glide path instruments have been manufactured. This study aimed to investigate design, phase transformation behavior, mechanical properties of TruNatomy Glider (#17/02), V Taper 2H (#14/03), and HyFlex EDM (#15/03) and compare torque/force generated during simulated glide path preparation with them.

Methods: The designs and phase-transformation behaviors of the instruments were examined via scanning electron microscopy (n = 3) and differential scanning calorimetry (n = 2).

View Article and Find Full Text PDF

With the growing availability of RNA sequencing technology in the pathology laboratory, new gene fusion-associated malignancies are increasingly being characterized. In this article, we describe the second ever reported case of a uterine sarcoma harboring a FGFR1-TACC1 gene fusion. The patient, a 53-yr-old perimenopausal woman, was found to have a 6 cm mass spanning the lower uterine segment and endocervix.

View Article and Find Full Text PDF

Hydrogen production, which is in the spotlight as a promising eco-friendly fuel, and the need for inexpensive and accurate electronic devices in the biochemistry field are important emerging technologies. However, the use of electrocatalytic devices based on expensive noble metal catalysts limits commercial applications. In recent years, to improve performance and reduce cost, electrocatalysts based on cheaper copper or nickel materials have been investigated for the non-enzymatic glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of novel bioactive glass (BAG)-containing desensitizers on the permeability of dentin. Experimental dentin desensitizers containing 3 wt% BAG with or without acidic functional monomers (10-MDP or 4-META) were prepared. A commercial desensitizer, Seal & Protect (SNP), was used as a control.

View Article and Find Full Text PDF

Objective: Although minimally invasive hysterectomy (MIS-H) has been associated with worse survival compared to abdominal hysterectomy (AH) for cervical cancer, only 8% of patients in the LACC trial had microinvasive disease (Stage IA1/IA2). We sought to determine differences in outcome among patients undergoing MIS-H, AH or combined vaginal-laparoscopic hysterectomy (CVLH) for microinvasive cervical cancer.

Methods: A retrospective cohort study of all patients undergoing hysterectomy (radical and non radical) for FIGO 2018, microinvasive cervical cancer across 10 Canadian centers between 2007 and 2019 was performed.

View Article and Find Full Text PDF

The ability to realize a highly capacitive/conductive electrode is an essential factor in large-scale devices, requiring a high-power/energy density system. Germanium is a feasible candidate as an anode material of lithium-ion batteries to meet the demands. However, the application is constrained due to low charge conductivity and large volume change on cycles.

View Article and Find Full Text PDF

High-energy density lithium-oxygen batteries (LOBs) seriously suffer from poor rate capability and cyclability due to the slow oxygen-related electrochemistry and uncontrollable formation of lithium peroxide (LiO) as an insoluble discharge product. In this work, we accommodated the discharge product in macro-scale voids of a carbon-framed architecture with meso-dimensional channels on the carbon frame and open holes connecting the neighboring voids. More importantly, we found that a specific dimension of the voids guaranteed high capacity and cycling durability of LOBs.

View Article and Find Full Text PDF

Background: The addition of bioactive glass (BG), a highly bioactive material with remineralization potential, might improve the drawback of weakening property of mineral trioxide aggregates (MTA) when it encounters with body fluid. This study aims to evaluate the effect of BG addition on physical properties of MTA.

Methods: ProRoot (MTA), and MTA with various concentrations of BG (1, 2, 5 and 10% BG/MTA) were prepared.

View Article and Find Full Text PDF

The photoelectrochemical performance of a co-doped hematite photoanode might be hindered due to the unintentionally diffused Sn from a fluorine-doped tin oxide (FTO) substrate during the high-temperature annealing process by providing an increased number of recombination centers and structural disorder. We employed a two-step annealing process to manipulate the Sn concentration in co-doped hematite. The Sn content [Sn/(Sn + Fe)] of a two-step annealing sample decreased to 1.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of a novel bioactive glass (BAG)-containing dentin adhesive on the permeability of demineralized dentin. Bioactive glass (85% SiO, 15% CaO) was fabricated using the sol-gel process, and two experimental dentin adhesives were prepared with 3 wt% silica (silica-containing dentin adhesive; SCA) or BAG (BAG-containing dentin adhesive; BCA). Micro-tensile bond strength (μTBS) test, fracture mode analysis, field-emission scanning electron microscopy (FE-SEM) analysis of adhesive and demineralized dentin, real-time dentinal fluid flow (DFF) rate measurement, and Raman confocal microscopy were performed to compare SCA and BCA.

View Article and Find Full Text PDF

Utilizing the broad-band solar spectrum for sea water desalination is a promising method that can provide fresh water without sophisticated infrastructures. However, the solar-to-vapour efficiency has been limited due to the lack of a proper design for the evaporator to deal with either a large amount of heat loss or salt accumulation. Here, these issues are addressed via two cost-effective approaches: I) a rational design of a concave shaped supporter by 3D-printing that can promote the light harvesting capacity via multiple reflections on the surface; II) the use of a double layered photoabsorber composed of a hydrophilic bottom layer of a polydopamine (PDA) coated glass fiber (GF/C) and a hydrophobic upper layer of a carbonized poly(vinyl alcohol)/polyvinylpyrrolidone (PVA/PVP) hydrogel on the supporter, which provides competitive benefit for preventing deposition of salt while quickly pumping the water.

View Article and Find Full Text PDF

Despite their safety, nontoxicity, and cost-effectiveness, zinc aqueous batteries still suffer from limited rechargeability and poor cycle life, largely due to spontaneous surface corrosion and formation of large Zn dendrites by irregular and uneven plating and stripping. In this work, these untoward effects are minimized by covering Zn electrodes with ultrathin layers of covalent organic frameworks, COFs. These nanoporous and mechanically flexible films form by self-assembly-via the straightforward and scalable dip-coating technique-and permit efficient mass and charge transport while suppressing surface corrosion and growth of large Zn dendrites.

View Article and Find Full Text PDF