Background: Mesenchymal stem cells (MSCs) have shown potential in regenerative medicine. In the present study the effects of MSC dosage and recipient sex on tendon regeneration were evaluated.
Methods: A full-thickness tendon defect (FTTD) was created on supraspinatus tendons (SSTs) of rats and cryoprotective solution (CPS) and MSCs (0.
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury.
View Article and Find Full Text PDFPeripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair.
View Article and Find Full Text PDFHeterotopic ossification (HO) is a pathological process resulting in aberrant bone formation and often involves synovial lined tissues. During this process, mesenchymal progenitor cells undergo endochondral ossification. Nonetheless, the specific cell phenotypes and mechanisms driving this process are not well understood, in part due to the high degree of heterogeneity of the progenitor cells involved.
View Article and Find Full Text PDFNumerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells.
View Article and Find Full Text PDFAlthough mesenchymal stem cells (MSCs) can be obtained from various tissues such as bone marrow (BM), umbilical cord blood (UCB) and umbilical cord tissue (UC), the comparative efficacy of each MSC in tendon regeneration is unknown. Therefore, we investigated the efficacy of MSCs isolated from three different sources on tendon regeneration after injury. We evaluated the potential of BM-, UCB- and UC-MSC to differentiate into tendon-like cells in tensioned three-dimensional construct (T-3D) using gene and histological analysis.
View Article and Find Full Text PDFChronic kidney disease (CKD) is defined as structural and functional abnormalities of the kidney due to inflammation and fibrosis. We investigated the therapeutic effects of exosomes secreted by melatonin-stimulated mesenchymal stem cells (Exocue) on the functional recovery of the kidney in a CKD mouse model. Exocue upregulated gene expression of micro RNAs (miRNAs) associated with anti-inflammatory and anti-fibrotic effects.
View Article and Find Full Text PDFAtopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments.
View Article and Find Full Text PDFAims: Corticosteroid injections are used to treat shoulder pain. Platelet-rich plasma (PRP) is known to have anti-inflammatory and anabolic effects, as well as cytoprotective effects against corticosteroids. Thus, this study was to investigate the effects of co-treatment of corticosteroid and PRP on anti-inflammatory and matrix homeostasis of synoviocytes in IL-1ß-induced inflammatory conditions.
View Article and Find Full Text PDFAlthough rotator cuff disease is a common cause of shoulder pain, there is still no treatment method that could halt or reveres its development and progression. The purpose of this study was to investigate the efficacy of umbilical cord-derived mesenchymal stem cells (UC MSCs) on the regeneration of a full-thickness rotator cuff defect (FTD) in a rat model. We injected either UC MSCs or saline to the FTD and investigated macroscopic, histological and biomechanical results and cell trafficking.
View Article and Find Full Text PDFBackground: It is difficult to immediately use mesenchymal stem cells (MSCs) for the patient with rotator cuff disease because isolation and culture time are required. Thus, the MSCs would be prepared in advanced in cryopreserved condition for an "off-the-shelf" usage in clinic. This study investigated the efficacy of freshly thawed MSCs on the regeneration of a full-thickness tendon defect (FTD) of rotator cuff tendon in a rat model.
View Article and Find Full Text PDFRegeneration of the gradient structure of the tendon-to-bone interface (TBI) is a crucial goal after rotator cuff repair. The purpose of this study was to investigate the efficacy of a biomimetic hydroxyapatite-gradient scaffold (HA-G scaffold) isolated from adipose tissue (AD) with umbilical cord derived mesenchymal stem cells (UC MSCs) on the regeneration of the structure of the TBI by analyzing the histological and biomechanical changes in a rat repair model. As a result, the HA-G scaffold had progressively increased numbers of hydroxyapatite (HA) particles from the tendon to the bone phase.
View Article and Find Full Text PDFNeuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell-derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons.
View Article and Find Full Text PDF