Publications by authors named "Ji-Hye Paik"

Article Synopsis
  • The study examines how WNT and Notch signaling influence the differentiation of intestinal stem cells (CBCs) into various cell types, particularly noting a metabolic transition towards lower mitochondrial activity during this process.
  • It highlights the role of Forkhead box O (FoxO) transcription factors in regulating CBCs, showing that deletion of FoxO genes in mice leads to increased differentiation into secretory cells.
  • The research indicates that FoxO and Notch pathways interact to control mitochondrial fission, which is crucial for determining the fate of stem cells and their differentiation into specific intestinal cell types such as goblet cells and Paneth cells.
View Article and Find Full Text PDF

Design of tissue-specific contrast agents to delineate tumors from background tissues is a major unmet clinical need for ultimate surgical interventions. Bioconjugation of fluorophore(s) to a ligand has been mainly used to target overexpressed receptors on tumors. However, the size of the final targeted ligand can be large, >20 kDa, and cannot readily cross the microvasculature to meet the specific tissue, resulting in low targetability with a high background.

View Article and Find Full Text PDF

Purpose: While leptin has been associated with various psycho-physiological functions, the molecular network in leptin-mediated mood regulation remains elusive.

Methods: Anxiolytic behaviors and tyrosine hydroxylase (TH) levels were examined after leptin administration. Functional roles of STAT3 and FoxO1 in regulation of TH expression were investigated using in vivo and in vitro systems.

View Article and Find Full Text PDF

Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated.

View Article and Find Full Text PDF

Stresses like low nutrients, systemic inflammation, cancer or infections provoke a catabolic state characterized by enhanced muscle proteolysis and amino acid release to sustain liver gluconeogenesis and tissue protein synthesis. These conditions activate the family of Forkhead Box (Fox) O transcription factors. Here we report that muscle-specific deletion of FoxO members protects from muscle loss as a result of the role of FoxOs in the induction of autophagy-lysosome and ubiquitin-proteasome systems.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is highly amplified, mutated, and overexpressed in human malignant gliomas. Despite its prevalence and growth-promoting functions, therapeutic strategies to inhibit EGFR kinase activity have not been translated into profound beneficial effects in glioma clinical trials. To determine the roles of oncogenic EGFR signaling in gliomagenesis and tumor maintenance, we generated a novel glioma mouse model driven by inducible expression of a mutant EGFR (EGFR*).

View Article and Find Full Text PDF

Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways.

View Article and Find Full Text PDF

The ZNF365 locus is associated with breast cancer risk in carriers of mutated BRCA1 and BRCA2, which are important molecules required for DNA damage response. Previously, we demonstrated that ZNF365 is necessary for timely resolution of replication intermediates of genomic fragile sites and, thus, for suppression of genomic instability; however, the mechanism underlying the function of ZNF365 on damaged DNA and stalled replication forks remains unknown. Here, we demonstrate that ZNF365 is induced by DNA double-strand break (DSB) signals, is involved in the homologous recombination (HR) repair pathway, and maintains genome integrity during DNA replication.

View Article and Find Full Text PDF

Critically short telomeres activate cellular senescence or apoptosis, as mediated by the tumor suppressor p53, but in the absence of this checkpoint response, telomere dysfunction engenders chromosomal aberrations and cancer. Here, analysis of p53-regulated genes activated in the setting of telomere dysfunction identified Zfp365 (ZNF365 in humans) as a direct p53 target that promotes genome stability. Germline polymorphisms in the ZNF365 locus are associated with increased cancer risk, including those associated with telomere dysfunction.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) is characterized by chronic muscle ischemia. Compensatory angiogenesis is minimal within ischemic muscle despite an increase in angiogenic factors. This may occur due to the prevalence of angiostatic factors.

View Article and Find Full Text PDF

Neural stem cells (NSCs) persist over the lifespan of mammals to give rise to committed progenitors and their differentiated cells in order to maintain the brain homeostasis. To this end, NSCs must be able to self-renew and otherwise maintain their quiescence. Suppression of aberrant proliferation or undesired differentiation is crucial to preclude either malignant growth or precocious depletion of NSCs.

View Article and Find Full Text PDF

Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFβR2 and the TGFβ signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies.

View Article and Find Full Text PDF

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression.

View Article and Find Full Text PDF

The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice.

View Article and Find Full Text PDF
Article Synopsis
  • The onset of pancreatic ductal adenocarcinoma (PDAC) is primarily caused by mutations in the KRAS gene, along with the frequent loss of tumor suppressor genes like PTEN.
  • Significant deletions of the PTEN gene have been observed in human PDAC cases, and studies in mice suggest PTEN acts as a critical tumor suppressor when its expression is lost.
  • The combination of KRAS mutations and PTEN loss enhances NF-κB activation and boosts tumor-promoting inflammation, indicating that alterations in the PTEN/PI3K pathway play a key role in the development and progression of PDAC by modifying the tumor microenvironment.
View Article and Find Full Text PDF

The PI3K-Akt-FoxO signaling pathway plays a central role in diverse physiological processes including cellular energy storage, growth, and survival, among others. As an important effector of this pathway, FoxO is involved in versatile activities that protect organisms from stress and aging. Recent studies on mammalian FoxO have established a direct role for this transcription factor family in cellular proliferation, oxidative stress response, and tumorigenesis.

View Article and Find Full Text PDF

Understanding the factors that impede immune responses to persistent viruses is essential in designing therapies for HIV infection. Mice infected with LCMV clone-13 have persistent high-level viremia and a dysfunctional immune response. Interleukin-7, a cytokine that is critical for immune development and homeostasis, was used here to promote immunity toward clone-13, enabling elucidation of the inhibitory pathways underlying impaired antiviral immune response.

View Article and Find Full Text PDF

Transcriptional regulatory mechanisms of cardiac oxidative stress resistance are not well defined. FoxO transcription factors are critical mediators of oxidative stress resistance in multiple cell types, but cardioprotective functions have not been reported previously. FoxO function in oxidative stress resistance was investigated in cultured cardiomyocytes and in mice with cardiomyocyte-specific combined deficiency of FoxO1 and FoxO3 subjected to myocardial infarction (MI) or acute ischemia/reperfusion (I/R) injury.

View Article and Find Full Text PDF

An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes.

View Article and Find Full Text PDF

The active thyroid hormone 3,5,3' triiodothyronine (T3) is a major regulator of skeletal muscle function. The deiodinase family of enzymes controls the tissue-specific activation and inactivation of the prohormone thyroxine (T4). Here we show that type 2 deiodinase (D2) is essential for normal mouse myogenesis and muscle regeneration.

View Article and Find Full Text PDF

Recently, recombinant Streptomyces venezuelae has been established as a heterologous host for microbial production of flavanones and stilbenes, a class of plant-specific polyketides. In the present work, we expanded the applicability of the S. venezuelae system to the production of more diverse plant polyketides including flavones and flavonols.

View Article and Find Full Text PDF

A hallmark feature of glioblastoma is its strong self-renewal potential and immature differentiation state, which contributes to its plasticity and therapeutic resistance. Here, integrated genomic and biological analyses identified PLAGL2 as a potent protooncogene targeted for amplification/gain in malignant gliomas. Enhanced PLAGL2 expression strongly suppresses neural stem cell (NSC) and glioma-initiating cell differentiation while promoting their self-renewal capacity upon differentiation induction.

View Article and Find Full Text PDF

CD4(+) regulatory T cells (T(reg) cells) characterized by expression of the transcription factor Foxp3 have a pivotal role in maintaining immunological tolerance. Here we show that mice with T cell-specific deletion of both the Foxo1 and Foxo3 transcription factors (collectively called 'Foxo proteins' here) developed a fatal multifocal inflammatory disorder due in part to T(reg) cell defects. Foxo proteins functioned in a T(reg) cell-intrinsic manner to regulate thymic and transforming growth factor-beta (TGF-beta)-induced Foxp3 expression, in line with the ability of Foxo proteins to bind to Foxp3 locus and control Foxp3 promoter activity.

View Article and Find Full Text PDF

The transcription factor Foxp3 is essential for optimal regulatory T (T reg) cell development and function. Here, we show that CD4(+) T cells from Cbl-b RING finger mutant knockin or Cbl-b-deficient mice show impaired TGF-beta-induced Foxp3 expression. These T cells display augmented Foxo3a phosphorylation, but normal TGF-beta signaling.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and lethal primary brain cancer that is driven by aberrant signaling of growth factor receptors, particularly the epidermal growth factor receptor (EGFR). EGFR signaling is tightly regulated by receptor endocytosis and lysosome-mediated degradation, although the molecular mechanisms governing such regulation, particularly in the context of cancer, remain poorly delineated. Here, high-resolution genomic profiles of GBM identified a highly recurrent focal 1p36 deletion encompassing the putative tumor suppressor gene, Mig-6.

View Article and Find Full Text PDF