The extensive use of carbon fiber-reinforced plastics (CFRP) in aerospace, civil engineering, and other fields has resulted in a significant amount of waste, leading to serious environmental issues. Finding appropriate methods for recycling CFRP waste and effectively reusing recycled carbon fibers (rCFs) has become a challenging task. This paper presents an overview of the current status of CFRP waste and provides a systematic review and analysis of recycling technologies.
View Article and Find Full Text PDFBackground: Parents of children with complicated congenital heart disease (CHD) have different needs after surgery. Little literature reports the impact factors for psychological needs of parents of children with complicated CHD.
Aim: To investigate the status quo of the needs of parents of children after surgery for complex CHD, and analyze the influencing factors, in order to provide a theoretical basis for formulating corresponding nursing countermeasures.
Preserving the integrity of carbon fibers when recycling carbon-fiber-reinforced plastics (CFRPs) has been unfeasible due to the harsh reaction conditions required to remove epoxy resin matrixes, which adversely affect the properties of carbon fibers. We establish a practicable and environmentally friendly reclamation strategy for carbon fibers. Carbon fibers are recycled from waste CFRPs by an electrochemical catalytic reaction with the assistance of phosphotungstic acid (PA), which promotes the depolymerization of diglycidyl ether of bisphenol A/ethylenediamine (DGEBA/EDA) epoxy resin.
View Article and Find Full Text PDFCarbon fiber reinforced polymer (CFRP) has been used as a dual-functional material in a hybrid intervention system (ICCP-SS) which integrates the impressed current cathodic protection (ICCP) and structural strengthening (SS). The mechanical behavior of CFRP as an anode has been investigated in some solution environments. However, the anodic and mechanical behavior of CFRP bonded to concrete is unclear.
View Article and Find Full Text PDFIn this study, the effect of corrosion on the static behavior of stud shear connectors was investigated. An innovative test setup for single stud shear connectors was designed and established. Two series of specimens having different stud diameters were fabricated and tested.
View Article and Find Full Text PDFCarbon fiber-reinforced polymer (CFRP) is recognized as a promising anode material to prevent steel corrosion in reinforced concrete. However, the electrochemical performance of CFRP itself is unclear. This paper focuses on the understanding of electrochemical and mechanical properties of CFRP in an oxygen evolution environment by conducting accelerated polarization tests.
View Article and Find Full Text PDFThe mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard.
View Article and Find Full Text PDFThis paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode.
View Article and Find Full Text PDFAn investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests.
View Article and Find Full Text PDFA new diterpene glycoside, tomentoside I (1), along with eleven known compounds, including the four coumarins, 4,5-dimethoxyl-7-methylcoumarin (2), 4,7-dimethoxyl-5-methylcoumarin (3), isofraxidin (4) and fraxidin (5) as well as the seven triterpenoids, oleanolic acid (6), oleanolic acid 3-O-α-L-arabinopyranoside (7), oleanolic acid 3-O-β-D-galactopyranosyl-(1→3)-β-D-glucopyranoside (8), hederagenin 3-O-α-L-arabinopyranoside (9), betulinic acid (10), 18-hydroxyursolic acid (11) and 2α,3β,23-trihydroxyurs-12-en-28-oic acid (12) were isolated from the ethanolic extract of the root of Anemone tomentosa and their chemical structures were elucidated by spectroscopic methods. The antimicrobial activities of compounds 1-12 were measured using the agar disc-diffusion method. Also, their antioxidant activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) were evaluated.
View Article and Find Full Text PDFTwo new natural products, (3R)-5,7-dihydroxy-8-(2″-O-veratroyl-β-D-glucopyranosyl)-3-(4'-hydroxyphenyl)-6-methylchroman-4-one (1) and 4'-hydroxyisoflavone-7-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside] (2), along with eleven other known flavonoids, were isolated from the roots of Acanthopanax brachypus. Their structures were elucidated on the basis of spectroscopic and chemical evidence.
View Article and Find Full Text PDF