A novel bacterium, designated strain JHSY0214, was isolated from the gut of a Korean limpet, . Cells of strain JHSY0214 were Gram-stain-negative, strictly aerobic, yellow-pigmented, non-spore-forming, non-motile and showed a rod-coccus growth cycle. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus , and was most closely related to KCTC 12764 (98.
View Article and Find Full Text PDFNontuberculous mycobacterial pulmonary diseases (NTM-PDs) are emerging as global health threats with issues of antibiotic resistance. Accumulating evidence suggests that the gut-lung axis may provide novel candidates for host-directed therapeutics against various infectious diseases. However, little is known about the gut-lung axis in the context of host protective immunity to identify new therapeutics for NTM-PDs.
View Article and Find Full Text PDFThree aerobic, Gram-negative, and rod-shaped bacterial strains, designated strains G4M1, SM13, and L12M9, were isolated from the gut of Batillaria multiformis, Cellana toreuma, and Patinopecten yessoensis collected from the Yellow Sea in South Korea. All the strains grew optimally at 25°C, in the presence of 2% (w/v) NaCl, and at pH 7. These three strains, which belonged to the genus Polaribacter in the family Flavobacteriaceae, shared < 98.
View Article and Find Full Text PDFLipopolysaccharide (LPS) triggers deleterious systemic inflammatory responses when released into the circulation. LPS-binding protein (LBP) in the serum plays an important role in modifying LPS toxicity by facilitating its interaction with LPS signaling receptors, which are expressed on the surface of LPS-responsive cells. We have previously demonstrated that high mobility group box 1 (HMGB1) can bind to and transfer LPS, consequently increasing LPS-induced TNF-α production in human peripheral blood mononuclear cells (PBMCs).
View Article and Find Full Text PDFPM0188 is a newly identified sialyltransferase from P. multocida which transfers sialic acid from cytidine 5'-monophosphonuraminic acid (CMP-NeuAc) to an acceptor sugar. Although sialyltransferases are involved in important biological functions like cell-cell recognition, cell differentiation and receptor-ligand interactions, little is known about their catalytic mechanism.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2007
The protein BigH3 is a cell-adhesion molecule induced by transforming growth factor-beta (TGF-beta). It consists of four homologous repeat domains known as FAS1 domains; mutations in these domains have been linked to corneal dystrophy. The fourth FAS1 domain was expressed in Escherichia coli B834 (DE3) (a methionine auxotroph) and purified by DEAE anion-exchange and gel-filtration chromatography.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
February 2006
Sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine-5-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to the carbohydrate group of various glycoproteins. These glycoproteins are involved in inflammation, embryogenesis, immune defence and metastasis of cancer cells by cell-cell interactions or cell-matrix interactions. The alpha-2,6-sialyltransferase PM0188 from Pasteurella multocida was purified using affinity-column chromatographic methods and crystallized using the hanging-drop vapour-diffusion method at 293 K.
View Article and Find Full Text PDF