Publications by authors named "Ji-Heon Rhim"

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme that participates in various cellular events, such as DNA repair and apoptosis. The functional diversity of GAPDH depends on its intracellular localization. Because AMP-activated protein kinase (AMPK) regulates the nuclear translocation of GAPDH in young cells and AMPK activity significantly increases during aging, we investigated whether altered AMPK activity is involved in the nuclear localization of GAPDH in senescent cells.

View Article and Find Full Text PDF

Background: Following successful preclinical studies, stem cell therapy is emerging as a candidate for the treatment of articular cartilage lesions. Because stem cell therapy for cartilage repair in humans is at an early phase, confusion and errors are found in the literature regarding use of the term stem cell therapy in this field.

Purpose: To provide an overview of the outcomes of cartilage repair, elucidating the various cell populations used, and thus reduce confusion with regard to using the term stem cell therapy.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs) and to determine the optimal concentrations of the MSCs in a rabbit model.

View Article and Find Full Text PDF

Neural progenitor (NP) cells are the multipotent cells that produce neurons and glia in the central nervous system. Compounds regulating their proliferation are key to both understanding brain development and unlocking their potential in regenerative repair. We discuss a chemical screen that unexpectedly identified inhibitors of Erk signaling potently promoting the self-renewing divisions of fetal NP cells.

View Article and Find Full Text PDF

Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors.

View Article and Find Full Text PDF

Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species.

View Article and Find Full Text PDF

The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data.

View Article and Find Full Text PDF

Excess caveolin-1 has been reported to play a role in age-dependent hyporesponsiveness to growth factors in vitro. Therefore, we hypothesized that caveolin-1-dependent hyporesponsiveness to growth factors in aged corneal epithelial cells might be responsible for delayed wound healing in vivo. To test this hypothesis, we evaluated corneal wound-healing time by vital staining using fluorescein after laser epithelial keratomileusis (LASEK).

View Article and Find Full Text PDF

The antibiotic drug 4,4'-diaminodiphenylsulphone (DDS) is used to treat several dermatologic diseases, including Hansen's disease. This study confirmed the antioxidant nature of DDS in hydrogen peroxide (H(2)O(2))-induced oxidative stress and assessed its role in other apoptotic stresses in human diploid fibroblasts (HDFs). Oxidative stress was effectively reduced by DDS in a dose-dependent manner.

View Article and Find Full Text PDF

We previously showed that lysophosphatidic acid (LPA) and an adenylyl cyclase inhibitor (ACI) stimulate mitogenic activation of senescent human diploid fibroblasts. Because the modulation of cell proliferation may affect wound healing in aged organisms, we studied the effects of LPA and ACI on in vivo skin wound healing in aged Fisher 344 rats. We found that, in aged rats, wound healing improved in animals treated with LPA and/or ACI (relative to untreated controls), as assessed by histological analysis of reepithelialization and immunostaining for proliferating cell nuclear antigen.

View Article and Find Full Text PDF

In addition to its well-known glycolytic activity, GAPDH displays multiple functions, such as nuclear RNA export, DNA replication and repair, and apoptotic cell death. This functional diversity depends on its intracellular localization. In this study, we explored the signal transduction pathways involved in the nuclear translocation of GAPDH using confocal laser scanning microscopy of immunostained human diploid fibroblasts (HDFs).

View Article and Find Full Text PDF

The action mode of 4,4-diaminodiphenylsulfone (DDS) is still under debate, although it has long been used in treatment of several dermatologic diseases including Hansens disease. In this study, we tested the effect of DDS as an antioxidant on paraquat-induced oxidative stress in non-phagocytic human diploid fibroblasts (HDFs). Overall, preincubation of HDFs with DDS prevented the oxidative stress and the resulting cytotoxic damages caused by paraquat in these cells.

View Article and Find Full Text PDF

The gene expression profiles of lysophosphatidic acid (LPA)-treated young and senescent human diploid fibroblasts (HDFs) were examined using cDNA microarray analysis. The expression of some genes, including EGR 1/3 and MRRF, was controlled by LPA similarly in young and senescent cells, showing a typical time-dependent up-and-down expression profile. In contrast, some other genes, including DUSP6, CYR61, and F3, showed sustained upregulation in senescent HDFs later after LPA treatment.

View Article and Find Full Text PDF

This study was designed to elucidate the molecular mechanism underlying lysophosphatidic acid (LPA) and adenylyl cyclase inhibitor SQ22536 (ACI)-induced senescent human diploid fibroblast (HDF) proliferation. Because adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to inhibit cell proliferation, we examined the phosphorylation status of AMPK and p53 and the expression level of p21(waf1/cip1) after treating HDFs with LPA and ACI. Phosphorylation of AMPKalpha on threonine-172 (p-Thr172-AMPKalpha) increases its catalytic activity but phosphorylation on serine-485/491 (p-Ser485/491-AMPKalpha) reduces the accessibility of the Thr172 phosphorylation site thereby inhibiting its catalytic activity.

View Article and Find Full Text PDF

Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs.

View Article and Find Full Text PDF

This study attempts to elucidate the molecular mechanisms underlying the ageing-dependent cAMP profiles in human diploid fibroblasts stimulated by lysophosphatidic acid (LPA). In senescent cells, LPA-dependent Gialpha activation was reduced, with a consequent reduction in Gi-suppressed cAMP levels, without alterations in the levels of Gialpha proteins. In young cells, when Gialpha activity was inhibited by pertussis toxin pretreatment, or when its expression was blocked by siRNA, the pattern of changes in cAMP levels in response to LPA was similar to that seen in senescent cells.

View Article and Find Full Text PDF

One of the characteristics of the senescent cell is apoptotic resistance. Gelsolin, a Ca(2+)-dependent actin regulatory protein, is believed to regulate the intracellular movements which are necessary for cell growth, proliferation, and differentiation. Recently, gelsolin was suggested to play a role in apoptotic resistance, which led us to examine its involvement in the apoptotic resistance of senescent cells.

View Article and Find Full Text PDF