Publications by authors named "Ji-Eon Park"

In this study, we explored the oncogenic mechanism of cleavage and polyadenylation-specific factor 6 (CPSF6) in hepatocellular carcinoma (HCC). CPSF6 was overexpressed in HCC tissues with poor survival rates compared to normal tissues. Hence, CPSF6 depletion suppressed cell viability and colony formation, induced apoptosis via PARP cleavage, and increased the sub-G1 population of Hep3B and Huh7 cells.

View Article and Find Full Text PDF

Although is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure.

View Article and Find Full Text PDF

Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells.

View Article and Find Full Text PDF

Though cornin is known to induce angiogenic, cardioprotective, and apoptotic effects, the apoptotic mechanism of this iridoid monoglucoside is not fully understood in prostate cancer cells to date. To elucidate the antitumor mechanism of cornin, cytotoxicity assay, cell cycle analysis, Western blotting, RT-qPCR, RNA interference, immunofluorescence, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor assay were applied in this work. Cornin exerted cytotoxicity, increased sub-G1 population, and cleaved PARP and caspase3 in LNCaP cells more than in DU145 cells.

View Article and Find Full Text PDF

Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells.

View Article and Find Full Text PDF

Though Morusin is known to induce apoptotic, antiprolifertaive, and autophagic effects through several signaling pathways, the underlying molecular mechanisms of Morusin still remain unclear until now. To elucidate antitumor mechanism of Morusin, cytotoxicity assay, cell cycle analysis, Western blotting, TUNEL assay, RNA interference, immunofluorescense, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor study were applied in this study. Morusin enhanced cytotoxicity, increased the number of TUNEL positive cells, sub-G1 population and induced the cleavages of PARP and caspase3, attenuated the expression of HK2, PKM2, LDH, c-Myc, and Forkhead Box M1 (FOXM1) along with the reduction of glucose, lactate, and ATP in DU145 and PC3 cells.

View Article and Find Full Text PDF

Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor β1 (TGF-β1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-β1-treated AML-12 cells.

View Article and Find Full Text PDF

To elucidate the underlying antitumor mechanism of lambertianic acid (LA) derived from Pinus koraiensis, the role of cancer metabolism related molecules was investigated in the apoptotic effect of LA in DU145 and PC3 prostate cancer cells. MTT assay for cytotoxicity, RNA interference, cell cycle analysis for sub G1 population, nuclear and cytoplasmic extraction, lactate, Glucose and ATP assay by ELISA, Measurement of reactive oxygen species (ROS) generation, Western blotting, and immunoprecipitation assay were conducted in DU145 and PC3 prostate cancer cells. Herein LA exerted cytotoxicity, increased sub G1 population and attenuated the expression of pro-Caspase3 and pro-poly (ADP-ribose) polymerase (pro-PARP) in DU145 and PC3 cells.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. To assess DILI, the variety of and animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide.

View Article and Find Full Text PDF

The aim of the present study is to explore the underlying hepatoprotective mechanism of PKC#963, consisting of Pinus koraiensis, Saururus chinensis, and Lycium barbarum in association with acute and chronic liver injury induced by alcohol or carbon tetrachloride (CCl4). Here, PKC#963 significantly suppressed aspartate aminotransferase (AST), alanine aminotransferase (ALT), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2) in CCl4-treated HepG2 cells. Also, PKC#963 significantly suppressed reactive oxygen species (ROS) production in HepG2 cells.

View Article and Find Full Text PDF

To target benign prostatic hyperplasia (BPH) as a common urinary disease in old men, in the current study, the antiproliferative and apoptotic mechanism of SH-PRO, a mixture of Angelica gigas and Astragalus membranaceus (2:1), was evaluated in BPH-1 cells and rats with testosterone-induced BPH. Herein, SH-PRO significantly reduced the viability of BPH-1 cells and dihydrotestosterone (DHT)-treated RWPE-1 cells. Also, SH-PRO increased the sub-G1 population in BPH-1 cells and consistently attenuated the expression of pro-PARP, pro-caspase 3, Bcl2, FOXO3a, androgen receptor (AR), and prostate-specific antigen (PSA) in BPH-1 cells and DHT-treated RWPE-1 cells.

View Article and Find Full Text PDF

Though icariside E4 (IE4) is known to have anti-noceptive, anti-oxidant, anti-Alzheimer and anti-inflammatory effects, there was no evidence on the effect of IE4 on lipid metabolism so far. Hence, the hypolipogenic mechanism of IE4 was investigated in HepG2 hepatocellular carcinoma cells (HCCs) in association with MID1 Interacting Protein 1(MID1IP1) and AMPK signaling. Here, IE4 did not show any toxicity in HepG2 cells, but reduced lipid accumulation in HepG2 cells by Oil Red O staining.

View Article and Find Full Text PDF

Though cinnamaldehyde derivative (CB-PIC), a major compound of cinnamon, is known to have anticancer activity, its underlying mechanism is not fully understood. In the present study, the anticancer mechanism of CB-PIC was investigated in human hepatocellular carcinoma cells (HCCs) in association with signal transducer and activator of transcription 3 (STAT3) signaling. CB-PIC exerted cytotoxicity in HepG2 and Huh7 cells.

View Article and Find Full Text PDF

The goal of the current study is to assess the antitumor mechanism by the combination (7:3) of Angelica gigas and Torilis japonica (AT) that was found most effective through screening against prostate-specific antigen (PSA) in LNCaP prostate cancer cells. Here, AT reduced the viability and the number of colonies in androgen-dependent LNCaP cells more than in androgen independent PC3 and DU145 cells. Also, AT induced G1 phase arrest, cleaved PARP and caspase 3, activated p27 and decreased the expression of Cyclin D1, Cyclin E, cdk2 in LNCaP cells.

View Article and Find Full Text PDF

Herein, the apoptotic mechanism of 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) was examined in cisplatin-resistant lung cancer cells. PGG significantly reduced viability; increased sub-G1 accumulation and the number of terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling ()-positive cells; induced the cleavage of poly (ADP-ribose) polymerase (PARP), caspases (8,9,3,7), B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN); and attenuated the expression of p-AKT, X-linked inhibitor of apoptosis protein (), Bcl-2, Bcl-xL and survivin in A549/cisplatin-resistant (CR) and H460/CR cells. Notably, PGG activated p53, p-checkpoint kinase 2 (CHK2) and p-H2A histone family member X (p-), with increased levels of DNA damage (DSBs) evaluated by highly expressed pH2AX and DNA fragmentation registered on comet assay, while p53 knockdown reduced the ability of PGG to reduce viability and cleave caspase 3 and PARP in A549/CR and H460/CR cells.

View Article and Find Full Text PDF

Herein, apoptotic mechanism of Moracin D was explored in prostate cancer cells in association with peroxisome proliferator-activated receptor gamma (PPAR-γ)-related signaling involved in lipid metabolism. Moracin D augmented cytotoxicity and sub G1 population in PC3 and DU145 prostate cancer cells, while DU145 cells were more susceptible to Moracin D than PC3 cells. Moracin D attenuated the expression of caspase-3, poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-large (Bcl-xL) in DU145 cells.

View Article and Find Full Text PDF

Though Morusin isolated from the root of was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells.

View Article and Find Full Text PDF

Since the signal transducer and activator of transcription 3 (STAT3)/programmed death-ligand 1 (PD-L1) signaling plays an important role in tumor-immune microenvironments, in the present study, the role of STAT3/PD-L1 signaling in the apoptotic mechanism of an active ginseng saponin metabolite compound K (CK) was investigated in human prostate cancer cells. Here, CK exerted significant cytotoxicity without hurting RWPE1 normal prostate epithelial cells, increased sub-G1 and cleavage of Poly ADP-ribose polymerase (PARP) and attenuated the expression of pro-PARP and Pro-cysteine aspartyl-specific protease3 (pro-caspase-3) in LANCap, PC-3 and DU145 cells. Further, CK attenuated the expression of p-STAT3 and PD-L1 in DU145 cells along with disrupted the binding of STAT3 to PD-L1.

View Article and Find Full Text PDF

Novel target therapy is on the spotlight for effective cancer therapy. Hence, in the present study, the underlying apoptotic mechanism of Morusin was explored in association with miR193a-5p mediated ZNF746/c-Myc signaling axis in colorectal cancer cells (CRCs). Herein, Morusin reduced the viability and the number of colonies in HCT116 and SW480 CRCs.

View Article and Find Full Text PDF

Since cancer immunotherapy with immune checkpoint inhibitors of PD/PDL-1 and CTLA-4 limited efficacy to the patients due to resistance during the current decade, novel target is required for customized treatment due to tumor heterogeneity. V-domain Ig-containing suppressor of T cell activation (VISTA), a programmed death protein-1(PD-1) homolog expressed on T cells and on antigen presenting cells(APC), has emerged as a new target in several cancers. Though VISTA inhibitors including CA-170 are considered attractive in cancer immunotherapy to date, the information on VISTA as a potent biomarker of cancer prognosis and its combination therapy is still lacking to date.

View Article and Find Full Text PDF

In the current study, the pivotal roles of serum and glucocorticoid-induced protein kinase (SGK1) and NF-kB related signalings known as prognostic biomarkers in cervical cancers were explored in the antitumor effect of a ginseng saponin metabolite compound K (CK) in HeLa and SiHa cervical cancer cells. CK exerted significant cytotoxicity, induced sub-G1 accumulation, and attenuated the expression of proPoly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HeLa cells more than in SiHa cells. CK inhibited phosphorylation of SGK1 and its upstream genes, phosphoinositide 3-kinases (PI3K), and phosphoinositide-dependent kinase-1 (PDK1) in HeLa cells.

View Article and Find Full Text PDF

In the current study, the underlying anti-metastatic mechanism of melatonin contained in some edible plants was explored in association with transmembrane protease serine 4 (TMPRSS4) mediated metastasis and epithelial-mesenchymal transition (EMT) signaling in human HCT15 and SW620 colorectal cancer cells. Here, TMPRSS4 was highly expressed in HCT15, but was weakly expressed in SW620 cells. Melatonin exerted weak cytotoxicity, decreased invasion, adhesion, and migration, and attenuated the expression of TMPRSS4, cyclin E, pro-urokinase-type plasminogen activator (pro-uPA), p-signal transducer and activator of transcription 3 (p-STAT3), p-focal adhesion kinase (p-FAK), Snail and increased the expression of E-cadherin, p27, pp38 and p-Jun N-terminal kinases (p-JNK) in HCT15 cells.

View Article and Find Full Text PDF

Since the AKT/mammalian target of rapamycin (mTOR)/c-Myc signaling plays a pivotal role in the modulation of aerobic glycolysis and tumor growth, in the present study, the role of AKT/mTOR/c-Myc signaling in the apoptotic effect of Compound K (CK), an active ginseng saponin metabolite, was explored in HepG2 and Huh7 human hepatocellular carcinoma cells (HCCs). Here, CK exerted significant cytotoxicity, increased sub-G1, and attenuated the expression of pro-Poly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HepG2 and Huh7 cells. Consistently, CK suppressed AKT/mTOR/c-Myc and their downstreams such as Hexokinase 2 (HK2) and pyruvate kinase isozymes M2 (PKM2) in HepG2 and Huh7 cells.

View Article and Find Full Text PDF

Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles), dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs, including Doxil (liposome-encapsulated doxorubicin), Abraxane (albumin-bound paclitaxel), and Oncaspar (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast, several phytochemicals that were found to be effective in cultured cancer cells and animal studies have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid clearance, resistance, and toxicity.

View Article and Find Full Text PDF

Though Sanggenon G (SanG) from root bark of Morus alba was known to exhibit anti-oxidant and anti-depressant effects, its underlying mechanisms still remain unclear. Herein SanG reduced the viability of A549 and H1299 non-small lung cancer cells (NSCLCs). Also, SanG increased sub-G1 population via inhibition of cyclin D1, cyclin E, CDK2, CDK4 and Bcl-2, cleavages of poly (ADP-ribose) polymerase (PARP) and caspase-3 in A549 and H1299 cells.

View Article and Find Full Text PDF