We propose a scheme to implement a supersensitive estimation of the coupling strength in a hybrid optomechanical system which consists of a cavity-Bose-Einstein condensate system coupled to an impurity. This method can dramatically improve the estimation precision even when the involved photon number is small. The quantum Fisher information indicates that the Heisenberg scale sensitivity of the coupling rate could be obtained when the photon loss rate is smaller than the corresponding critical value in the input of either coherent state or squeezed state.
View Article and Find Full Text PDFIn the practical application of quantum entanglement, entangled particles usually need to be distributed to many distant parties or stored in different quantum memories. In these processes, entangled particles unavoidably interact with their surrounding environments, respectively. We here systematically investigate the entanglement-decay laws of cat-like states under independent Pauli noises with unbalanced probability distribution of three kinds of errors.
View Article and Find Full Text PDFWe present a new generalized Dicke model, an impurity-doped Dicke model (IDDM), by the use of an impurity-doped cavity-Bose-Einstein condensate (BEC). It is shown that the impurity atom can induce Dicke quantum phase transition (QPT) from the normal phase to superradiant phase at a critic value of the impurity population. It is found that the impurity-induced Dicke QPT can happen in an arbitrary field-atom coupling regime while the Dicke QPT in the standard Dicke model occurs only in the strong coupling regime of the cavity field and atoms.
View Article and Find Full Text PDF