Familial amyloidosis of Finnish type (FAF) is a systemic amyloid disease associated with the deposition of proteolytic fragments of mutant (D187N/Y) plasma gelsolin. We report a mouse model of FAF featuring a muscle-specific promoter to drive D187N gelsolin synthesis. This model recapitulates the aberrant endoproteolytic cascade and the aging-associated extracellular amyloid deposition of FAF.
View Article and Find Full Text PDFThe chemical environment of the extracellular matrix may influence the tissue-selective deposition observed there in gelsolin amyloid disease. Previously, we have identified the proteases that generate the amyloidogenic fragments from the full-length gelsolin variants and demonstrated that heparin is capable of accelerating gelsolin amyloidogenesis. Herein, we identify the structural features of heparin that promote the 8 kDa disease-associated gelsolin fragments (residues 173-243) generated at the cell surface to form amyloid.
View Article and Find Full Text PDFAmyloid diseases like Alzheimer's disease and familial amyloidosis of Finnish type (FAF) stem from endoproteolytic cleavage of a precursor protein to generate amyloidogenic peptides that accumulate as amyloid deposits in a tissue-specific manner. FAF patients deposit both 8 and 5 kDa peptides derived from mutant (D187Y/N) plasma gelsolin in the extracellular matrix (ECM). The first of two aberrant sequential proteolytic events is executed by furin to yield a 68 kDa (C68) secreted fragment.
View Article and Find Full Text PDFThe largest group of disease-causing mutations affecting calcium-binding epidermal growth factor-like (cbEGF) domain function in a wide variety of extracellular and transmembrane proteins is that which results in cysteine substitutions. Although known to introduce proteolytic susceptibility, the detailed structural consequences of cysteine substitutions in cbEGF domains are unknown. Here, we studied pathogenic mutations C1977Y and C1977R, which affect cbEGF30 of human fibrillin-1, in a recombinant three cbEGF domain fragment (cbEGF29-31).
View Article and Find Full Text PDF