Publications by authors named "Ji Suk Chang"

Unlabelled: Brown adipose tissue (BAT) simultaneously metabolizes fatty acids (FA) and glucose under cold stress but favors FA as the primary fuel for heat production. It remains unclear how BAT steer fuel preference toward FA over glucose. Here we show that the malate-aspartate shuttle (MAS) is activated by cold in BAT and plays a crucial role in promoting mitochondrial FA utilization.

View Article and Find Full Text PDF

Murine models of obesity or reduced adiposity are a valuable resource for understanding the role of adipocyte dysfunction in metabolic disorders. Adipose tissue stromal vascular cells or primary adipocytes derived from murine adipose tissue and grown in culture are essential tools for studying the mechanisms underlying adipocyte development and function. Herein, we describe methods for the isolation, expansion, and long-term storage of murine adipose-derived stromal/stem cells, along with protocols for inducing adipogenesis to white or beige adipocytes in this cell population and osteogenic differentiation.

View Article and Find Full Text PDF

Brown adipocytes is a specialized fat cell that dissipates nutrient-derived chemical energy in the form of heat, instead of ATP synthesis. This unique feature provides a marked capacity for brown adipocyte mitochondria to oxidize substrates independent of ADP availability. Upon cold exposure, brown adipocytes preferentially oxidize free fatty acids (FFA) liberated from triacylglycerol (TAG) in lipid droplets to support thermogenesis.

View Article and Find Full Text PDF

Brown and beige adipocytes are specialized to dissipate energy as heat. , encoding a serine/threonine kinase, has been identified as a brown and beige adipocyte-specific gene in rodents and humans; however, its function in brown/beige adipocytes remains unraveled. Here, we examined the regulation and role of in brown/beige adipose tissue thermogenesis.

View Article and Find Full Text PDF

Background: Brown adipose tissue (BAT) is specialized to dissipate energy in the form of heat. BAT-mediated heat production in rodents and humans is critical for effective temperature adaptation of newborns to the extrauterine environment immediately after birth. However, very little is known about whether and how fetal BAT development is modulated in-utero in response to changes in maternal thermal environment during pregnancy.

View Article and Find Full Text PDF

Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa.

View Article and Find Full Text PDF

Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α regulate metabolic adaptation by modulating many gene programs. Selective ablation of PGC-1α attenuates diet-induced obesity through enhancing fatty acid oxidation and thermogenesis by upregulation of NT-PGC-1α in brown adipose tissue (BAT). Recently, we have shown that selective ablation of NT-PGC-1α reduces fatty acid oxidation in BAT.

View Article and Find Full Text PDF

The central nervous system controls feeding behavior and energy expenditure in response to various internal and external stimuli to maintain energy balance. Here we report that the newly identified transcription factor zinc finger and BTB domain containing 16 (Zbtb16) is induced by energy deficit in the paraventricular (PVH) and arcuate (ARC) nuclei of the hypothalamus via glucocorticoid (GC) signaling. In the PVH, is expressed in the anterior half of the PVH and co-expressed with many neuronal markers such as corticotropin-releasing hormone (Crh), thyrotropin-releasing hormone (Trh), oxytocin (Oxt), arginine vasopressin (Avp), and nitric oxide synthase 1 (Nos1).

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays a central role in the response and adaptation to environmental and nutritional stimuli by initiating tissue-specific transcriptional reprogramming. Since its discovery in 1998, the field of PGC-1α biology has grown exponentially and a large body of research has elucidated the diverse roles of PGC-1α in brown adipose tissue thermogenesis, fatty acid oxidation, muscle fiber type switching, hepatic gluconeogenesis, and circadian clock regulation, etc. In addition, recent research has identified a splice variant(s) of PGC-1α in humans and rodents.

View Article and Find Full Text PDF

Transcriptional coactivator PPAR γ coactivator (PGC)-1α and its splice variant N-terminal (NT)-PGC-1α mediate transcriptional regulation of brown adipose tissue (BAT) thermogenesis in response to changes in ambient temperature. PGC-1α is dispensable for cold-induced BAT thermogenesis as long as NT-PGC-1α is present. However, the functional significance of NT-PGC-1α in BAT has not been determined.

View Article and Find Full Text PDF

Transcriptional coactivator PGC-1α and its splice variant NT-PGC-1α play crucial roles in regulating cold-induced thermogenesis in brown adipose tissue (BAT). PGC-1α and NT-PGC-1α are highly induced by cold in BAT and subsequently bind to and coactivate many transcription factors to regulate expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, respiration and thermogenesis. To identify the complete repertoire of PGC-1α and NT-PGC-1α target genes in BAT, we analyzed genome-wide DNA-binding and gene expression profiles.

View Article and Find Full Text PDF

Release of fatty acids from lipid droplets upon activation of the sympathetic nervous system (SNS) is a key step in nonshivering thermogenesis in brown adipose tissue (BAT). However, intracellular lipolysis appears not to be critical for cold-induced thermogenesis. As activation of the SNS increases glucose uptake, we studied whether intracellular glycolysis plays a role in BAT thermogenesis.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of brown adipocyte differentiation and thermogenesis. The PPARγ gene produces two isoforms, PPARγ1 and PPARγ2. PPARγ2 is identical to PPARγ1 except for additional 30 amino acids present in the N-terminus of PPARγ2.

View Article and Find Full Text PDF

Brown adipose tissue dissipates energy as heat, a process that relies on a high abundance of mitochondria and high levels of electron transport chain (ETC) complexes within these mitochondria. Two regulators of mitochondrial respiration and heat production in brown adipocytes are the transcriptional coactivator PGC-1α and its splicing isoform NT-PGC-1α, which control mitochondrial gene expression in the nucleus. Surprisingly, we found that, in brown adipocytes, some NT-PGC-1α localizes to mitochondria, whereas PGC-1α resides in the nucleus.

View Article and Find Full Text PDF

The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated.

View Article and Find Full Text PDF

The β3-adrenergic receptor (AR) signaling pathway is a major component of adaptive thermogenesis in brown and white adipose tissue during cold acclimation. The β3-AR signaling highly induces the expression of transcriptional coactivator PGC-1α and its splice variant N-terminal (NT)-PGC-1α, which in turn activate the transcription program of adaptive thermogenesis by co-activating a number of transcription factors. We previously reported that NT-PGC-1α is able to increase mitochondrial number and activity in cultured brown adipocytes by promoting the expression of mitochondrial and thermogenic genes.

View Article and Find Full Text PDF

EWS (Ewing sarcoma) encodes an RNA/ssDNA binding protein that is frequently rearranged in a number of different cancers by chromosomal translocations. Physiologically, EWS has diverse and essential roles in various organ development and cellular processes. In this study, we uncovered a new role of EWS in mitochondrial homeostasis and energy metabolism.

View Article and Find Full Text PDF

PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b) and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3(') splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle during physical exercise with different intensities.

View Article and Find Full Text PDF

The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α(-/-) mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α(254)) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α(-/-) mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a nuclear transcriptional coactivator that regulates the genes involved in energy metabolism. Recent evidence has been provided that alternative splicing of PPARGC1A gene produces a functional but predominantly cytosolic isoform of PGC-1α (NT-PGC-1α). We have demonstrated that transcriptional coactivation capacity of NT-PGC-1α is directly correlated with its nuclear localization in a PKA phosphorylation-dependent manner.

View Article and Find Full Text PDF

Brown fat expresses two PGC-1α isoforms (PGC-1α and NT-PGC-1α) and both play a central role in the regulation of cellular energy metabolism and adaptive thermogenesis by interacting with a wide range of transcription factors including PPARγ, PPARα, ERRα, and NRF1. PGC-1α consists of 797 amino acids, whereas alternative splicing of the PGC-1α gene produces a shorter protein called NT-PGC-1α (aa 1-270). We report in this paper that transcriptional activity of PGC-1α and NT-PGC-1α is differently affected by the transcriptional regulator, Twist-1.

View Article and Find Full Text PDF

Phosphorylation regulates assembly and disassembly of proteins during endocytosis. In yeast, Prk1 and Ark1 phosphorylate factors after vesicle internalization leading to coat disassembly. Scd5, a protein phosphatase-1 (PP1)-targeting subunit, is proposed to regulate dephosphorylation of Prk1/Ark1 substrates to promote new rounds of endocytosis.

View Article and Find Full Text PDF

PGC-1α is an inducible transcriptional coactivator that regulates cellular energy metabolism and adaptation to environmental and nutritional stimuli. In tissues expressing PGC-1α, alternative splicing produces a truncated protein (NT-PGC-1α) corresponding to the first 267 amino acids of PGC-1α. Brown adipose tissue also expresses two novel exon 1b-derived isoforms of PGC-1α and NT-PGC-1α, which are 4 and 13 amino acids shorter in the N termini than canonical PGC-1α and NT-PGC-1α, respectively.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus.

View Article and Find Full Text PDF

The transcriptional co-activator PGC-1alpha regulates functional plasticity in adipose tissue by linking sympathetic input to the transcriptional program of adaptive thermogenesis. We report here a novel truncated form of PGC-1alpha (NT-PGC-1alpha) produced by alternative 3' splicing that introduces an in-frame stop codon into PGC-1alpha mRNA. The expressed protein includes the first 267 amino acids of PGC-1alpha and 3 additional amino acids from the splicing insert.

View Article and Find Full Text PDF