Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C β4 (PLCβ4). TCR-mediated responses were severely impaired in PLCβ4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact.
View Article and Find Full Text PDFSporozoites of the etiological agent of malaria, Plasmodium, form parasitophorous vacuoles (PVs) in hepatocytes. The PV membranes (PVM) are coated with a well-known host autophagy marker LC3 and parasite-derived protein called Upregulated in infective sporozoites 3 (UIS3), which has been shown to interact with LC3 and inhibit LC3-mediated autophagic disruption at the PV. Although uis3(-) sporozoites cannot proliferate in wild-type cells, they can replicate efficiently in cells defective in autophagy due to the lack of Atg proteins such as Atg3, Atg5 and Atg7, since these Atg proteins are essential for processing of LC3.
View Article and Find Full Text PDFSepsis is a life-threating multi-organ disease induced by host innate immunity to pathogen-derived endotoxins including lipopolysaccharide (LPS). Direct sensing of LPS by caspase-11 activates inflammasomes and causes lethal sepsis in mice. Inhibition of caspase-11 inflammasomes is important for the prevention of LPS-induced septic shock; however, whether a caspase-11 inflammasome-specific suppressive mechanism exists is unclear.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) is important for host defense against various intracellular organisms including a protozoan pathogen Toxoplasma gondii. Various immune cells are recently shown to produce IFN-γ in T. gondii infection, however, it remains elusive which cell types are important for anti-T.
View Article and Find Full Text PDFis an obligate intracellular protozoan parasite capable of infecting warm-blooded animals by ingestion. The organism enters host cells and resides in the cytoplasm in a membrane-bound parasitophorous vacuole (PV). Inducing an interferon response enables IFN-γ-inducible immunity-related GTPase (IRG protein) to accumulate on the PV and to restrict parasite growth.
View Article and Find Full Text PDFPLC-β exerts biologic influences through GPCR. GPCRs are involved in regulating glucose-stimulated insulin secretion (GSIS). Previous studies have suggested that PLC-βs might play an important role in pancreatic β cells.
View Article and Find Full Text PDFThe liver stage of the etiological agent of malaria, , is obligatory for successful infection of its various mammalian hosts. Differentiation of the rod-shaped sporozoites of into spherical exoerythrocytic forms (EEFs) via bulbous expansion is essential for parasite development in the liver. However, little is known about the host factors regulating the morphological transformation of sporozoites in this organ.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2020
is an important human and animal pathogen that causes life-threatening toxoplasmosis. The host immune system produces interferon-γ (IFN-γ) to inhibit proliferation. IFN-γ-inducible indole-2,3-dioxygenase 1 (IDO1), which mediates tryptophan degradation, has a major role in anti- immune responses in various human cells.
View Article and Find Full Text PDFAlthough virulence mechanisms targeting gamma interferon (IFN-γ)-induced cell-autonomous antiparasitic immunity have been extensively characterized in mice, the virulence mechanisms in humans remain uncertain, partly because cell-autonomous immune responses against differ markedly between mice and humans. Despite the identification of inducible nitric oxide synthase (iNOS) as an anti- host factor in mice, here we show that iNOS in humans is a pro- host factor that promotes the growth of the parasite. The GRA15 effector-dependent disarmament of IFN-γ-induced parasite growth inhibition was evident when parasite-infected monocytes were cocultured with hepatocytes.
View Article and Find Full Text PDFis an important human and animal pathogen that causes life-threatening toxoplasmosis. Interferon-γ (IFN-γ) is critical for anti- cell-autonomous immunity in both humans and mice. To proliferate efficiently within the hosts, virulent strains of can suppress IFN-γ-dependent immunity.
View Article and Find Full Text PDFMammalian autophagy-related 8 (Atg8) homologs consist of LC3 proteins and GABARAPs, all of which are known to be involved in canonical autophagy. In contrast, the roles of Atg8 homologs in noncanonical autophagic processes are not fully understood. Here we show a unique role of GABARAPs, in particular gamma-aminobutyric acid (GABA)-A-receptor-associated protein-like 2 (Gabarapl2; also known as Gate-16), in interferon-γ (IFN-γ)-mediated antimicrobial responses.
View Article and Find Full Text PDFThe transition from wakefulness to a nonrapid eye movement (NREM) sleep state at the onset of sleep involves a transition from low-voltage, high-frequency irregular electroencephalography (EEG) waveforms to large-amplitude, low-frequency EEG waveforms accompanying synchronized oscillatory activity in the thalamocortical circuit. The thalamocortical circuit consists of reciprocal connections between the thalamus and cortex. The cortex sends strong excitatory feedback to the thalamus, however the function of which is unclear.
View Article and Find Full Text PDFAlso known as Sqstm1, p62 is a selective autophagy adaptor with a ubiquitin-binding domain. However, the role of p62 in the host defense against Toxoplasma gondii infection is unclear. Here, we show that interferon γ (IFN-γ) stimulates ubiquitin and p62 recruitment to T.
View Article and Find Full Text PDFIFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ-inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear.
View Article and Find Full Text PDFToxoplasma gondii infection results in co-option and subversion of host cellular signaling pathways. This process involves discharge of T. gondii effector molecules from parasite secretory organelles such as rhoptries and dense granules.
View Article and Find Full Text PDFIFN-γ mediates cellular innate immunity against an intracellular parasite, Toxoplasma gondii, by inducing immunity-related GTPases such as p47 IFN-γ-regulated GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), which also participate in antibacterial responses via autophagy. An essential autophagy protein, Atg5, was previously shown to play a critical role in anti-T. gondii cell-autonomous immunity.
View Article and Find Full Text PDFAlthough the pyrazolone derivative sulpyrine is widely used as an antipyretic analgesic drug, side effects, including fatal shock, have been reported. However, the molecular mechanism underlying such a severe side effect is largely unclear. Here, we report that the transcription factor CREBH that is highly expressed in the liver plays an important role in fatal shock induced by sulpyrine in mice.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) is essential for host defense against intracellular pathogens. Stimulation of innate immune cells by IFN-γ upregulates ∼2,000 effector genes such as immunity-related GTPases including p65 guanylate-binding protein (Gbp) family genes. We show that a cluster of Gbp genes was required for host cellular immunity against the intracellular parasite Toxoplasma gondii.
View Article and Find Full Text PDFSpecific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine.
View Article and Find Full Text PDFAdequate activation of CD4(+) T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4(+) T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood.
View Article and Find Full Text PDFThe ROP18 kinase has been identified as a key virulence determinant conferring a high mortality phenotype characteristic of type I Toxoplasma gondii strains. This major effector molecule is secreted by the rhoptries into the host cells during invasion; however, the molecular mechanisms by which this kinase exerts its pathogenic action remain poorly understood. In this study, we show that ROP18 targets the host endoplasmic reticulum-bound transcription factor ATF6β.
View Article and Find Full Text PDFMacrophage-derived nitric oxide (NO) plays an important role in protection against microbial infection in immune responses. Overproduction of NO by inducible nitric synthase (iNOS) is known to be closely correlated with the pathology of a variety of diseases and inflammations. In this study, we investigated the inhibitory effect of polyethylene glycol coated gold nanoparticles (GNP) on NO production and its molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW264.
View Article and Find Full Text PDF